
526

Математика и информатика Volume 59, Number 5, 2016 Mathematics and Informatics

NEURAL NETWORKS

Reinhard Magenreuter
University of Finance, Business and Entrepreneurship

Abstract. There are four backbones to analyze time-series in general and forecast
time-series for financial markets: Chaos-theory, Fuzzy logic, Neural networks and
Genetic algorithms. The first one is considered in (Magenreuter, 2016), while
the present paper is dedicated to the third backbone including an example with
promising outcomes in financial markts.

Keywords: perceptron, sigmoid, neural network, financial market, time-series,
forecasting

1. Introduction. Neural Networks, or artificial neural networks, are information
processing systems, which consist of huge amount of simple units (cells, neurons),
sending information to each other in form of activation of directed connections.
One essential element of the artificial neural networks is its ability to learn, the
ability to learn autonomously, e.g. the task of classification, out of training exam-
ples, without necessity, that the network must be programmed explicitly. Neural
Networks find applications in research areas like biology, neuro-biology, neuro-
physiology, medicine, picture recognition, economics…etc. Everywhere, where
huge amounts of data are used as basis for developing classifications and forecasts
in different industrial and scientific areas, adaptive systems like neural networks
are the right choice.

2. Perceptrons. Principle of maximal similarity and generalization.
(Nielsen, 2015) We will start with a type of artificial neuron called a percep-
tron. Perceptrons were developed in the 1950s and 1960s by Frank Rosenblatt
(1928 – 1971), inspired by earlier work by Warren McCulloch (1898 – 1969)
and Walter Pitts (1923 – 1969). Today, it is more common to use other models
of artificial neurons. The main neuron model used is one called the sigmoid
neuron. We will get to sigmoid neurons shortly. But to understand why sig-
moid neurons are defined the way they are, it is worthy to first explain per-
ceptrons.

A perceptron takes several binary inputs 1 2, , ...x x and produces a single binary
output:

Educational Technologies
Образователни технологии

527

Neural Networks

In the example shown the perceptron has three inputs 1 2 3, ,x x x . In general it

could have more or fewer inputs. Rosenblatt proposed a simple rule to compute the
output. He introduced weights, 1 2, , ...w w , real numbers expressing the importance
of the respective inputs to the output. The neuron’s output, 0 or 1, is determined
by whether the weighted sum j jj

w x∑ is less than or greater than some threshold
value. Just like the weights, the threshold is a real number which is a parameter of
the neuron. To put it in more precise algebraic terms:

output =
0 if treshold

1 if treshold

j jj

j jj

w x

w x

 ≤


>

∑
∑

.

That is the basic mathematical model. A way you can think about the perceptron
is that it is a device that makes decisions by weighing up evidence. There is a not
very realistic example, but still it is easy to understand. Suppose the weekend is
coming up, and you have heard that there is going to be a folk festival in your city.
You like folk and are trying to decide whether or not to go to the festival. You might
make your decision by weighing up three factors:

Is the weather good?
Does your friend want to accompany you?
Is the festival near public transit?
We can represent these three factors by corresponding binary variables 1 2 3, ,x x x

. For instance, we have 1 1x = if the weather is good, and 1 0x = if the weather is
bad. Similarly, 2 1x = if your friend wants to go, and 2 0x = if not. And similarly
again for 3x and public transit.

Now, suppose you absolutely adore folk, so much so that you are happy to go to
the festival even if your friend is uninterested and the festival is hard to get to. But
perhaps you really load the bad weather, and there is no way you would go to the
festival if the weather is bad. You can use perceptrons to model this kind of deci-
sion-making. One way to do this is to choose a weight 1 6w = for the weather, and

2 2w = and 3 2w = for the other conditions. The larger value of 1w indicates that
the weather matters a lot to you, much more than whether your friend joins you, or
the nearness of public transit. Finally, suppose you choose a threshold of 5 for the
perceptron. With these choices, the perceptron implements the desired decision-

528

Reinhard Magenreuter

making model, outputting 1 whenever the weather is good, and 0 whenever the
weather is bad. It makes no difference to the output whether your friend wants to
go, or whether public transit is nearby.

By varying the weights and the threshold, we can get different models of de-
cision-making. For example, suppose we instead chose a threshold of 3. Then the
perceptron would decide that you should go to the festival whenever the weather
was good or when both the festival was near public transit and your friend was will-
ing to join you. In other words, it would be a different model of decision-making.
Dropping the threshold means you are more willing to go to the festival.

Obviously, the perceptron is not a complete model of human decision-making.
But what the example illustrates is how a perceptron can weigh up different kinds
of evidence in order to make decisions. And it should seem plausible that a com-
plex network of perceptrons could make quite subtle decisions. Like we humans, a
neural network is able to generalize. Neural networks must not be programmed. It
is enough to present even huge amounts of data as input to the system. The neural
network then transforms this data within a so called input-layer through hidden
layers to so called output layers. Within the hidden layers the so called neurons
compare the input values with the desired values and adjusts during each iteration
the weighs so, that a given error will be minimized. This is a simple scheme, how a
back-propagation network processes in general:

In this network, the first column of perceptrons – what we shall call the first lay-
er of perceptrons – is making three very simple decisions, by weighing the input ev-
idence. What about the perceptrons in the second layer? Each of those perceptrons
is making a decision by weighing up the results from the first layer of decision-
making. In this way a perceptron in the second layer can make a decision at a more
complex and more abstract level than perceptrons in the first layer. And even more
complex decisions can be made by the perceptron in the third layer. In this way, a

529

Neural Networks

many-layer network of perceptrons can engage in sophisticated decision making.
Incidentally, when we defined perceptrons we said that a perceptron has just a

single output. In the network above the perceptrons look like they have multiple
outputs. In fact, they are still single output. The multiple output arrows are merely
a useful way of indicating that the output from a perceptron is being used as the
input to several other perceptrons. It is less unwieldy than drawing a single output
line which then splits.

Let us simplify the way we describe perceptrons. The condition
tresholdj jj

w x >∑ is cumbersome, and we can make two notational changes to
simplify it. The first change is to write j jj

w x∑ as a dot product, i.e. j jj
w x w x⋅ = ∑

, where w and x are vectors whose components are the weights and inputs, respec-
tively. The second change is to move the threshold to the other side of the inequal-
ity, and to replace it by what is known as the perceptron’s bias, b ≡ −threshold.
Using the bias instead of the threshold, the perceptron rule can be rewritten:

output =
0 if 0

1 if 0

w x b

w x b

⋅ + ≤
 ⋅ + >

.

One can think of the bias as a measure of how easy it is to get the perceptron to
output a 1. Or to put it in more biological terms, the bias is a measure of how easy
it is to get the perceptron to fire. For a perceptron with a really big bias, it is ex-
tremely easy to output a 1. But if the bias is very negative, then it is difficult for the
perceptron to output a 1. Obviously, introducing the bias is only a small change in
how we describe perceptrons, but it could lead to further notational simplifications.

We have described perceptrons as a method for weighing evidence to make
decisions. Another way perceptrons can be used is to compute the elementary
logical functions we usually think of as underlying computation, functions such
as AND, OR and NAND. For example, suppose we have a perceptron with two in-
puts, each with weight −2, and an overall bias of 3. Here is the perceptron:

Then we see that input 00 produces output 1, since (−2)∗0 + (−2)∗0 + 3 = 3 is
positive. Here, we have introduced the ∗symbol to make the multiplications ex-

530

Reinhard Magenreuter

plicit. Similar calculations show that the inputs 01 and 10 produce output 1. But the
input 11 produces output 0, since (−2)∗1 + (−2)∗1 + 3 = −1 is negative. And so our
perceptron implements a NAND gate!

The NAND example shows that we can use perceptrons to compute simple logi-
cal functions. In fact, we can use networks of perceptrons to compute any logical
function at all. The reason is that the NAND gate is universal for computation, that
is, we can build any computation up out of NAND gates. For example, we can use
NAND gates to build a circuit which adds two bits, 1x and 2x . This requires com-
puting the bitwise sum 1 2x x⊕ , as well as a carry bit which is set to 1 when both

1x and 2x are 1, i.e., the carry bit is just the bitwise product 1 2x x :

To get an equivalent network of perceptrons we replace all the NAND gates by
perceptrons with two inputs, each with weight −2 and an overall bias of 3. Here is
the resulting network. Note that we have moved the perceptron corresponding to
the bottom right NAND gate a little, just to make it easier to draw the arrows on
the diagram:

One notable aspect of this network of perceptrons is that the output from the

leftmost perceptron is used twice as input to the bottom most perceptron. When we
defined the perceptron model we did not say whether this kind of double-output-to-

531

Neural Networks

the-same-place was allowed. Actually, it does not much matter. If we do not want
to allow this kind of thing, then it is possible to simply merge the two lines, into a
single connection with a weight of –4 instead of two connections with –2 weights.
With that change, the network looks as follows, with all unmarked weights equal to
–2, all biases equal to 3, and a single weight of –4, as marked:

Up to now we have been drawing inputs like 1x and 2x as variables floating to

the left of the network of perceptrons. In fact, it is conventional to draw an extra
layer of perceptrons – the input layer – to encode the inputs:

This notation for input perceptrons, in which we have an output, but no inputs,

is a shorthand. It does not actually mean a perceptron with no inputs. To see this, sup-
pose we did have a perceptron with no inputs. Then the weighted sum j jj

w x∑ would
always be zero, and so the perceptron would output 1 if b > 0 and 0 if b ≤ 0. That is, the
perceptron would simply output a fixed value, not the desired value (1x , in the example
above). It is better to think of the input perceptrons as not really being perceptrons at all,
but rather special units which are simply defined to output the desired values 1x , 2x , …

532

Reinhard Magenreuter

The adder example demonstrates how a network of perceptrons can be used
to simulate a circuit containing many NAND gates. And because NAND gates are
universal for computation, it follows that perceptrons are also universal for compu-
tation. The computational universality of perceptrons is simultaneously reassuring
and disappointing. It is reassuring because it tells us that networks of perceptrons
can be as powerful as any other computing device. But it is also disappointing, be-
cause it makes it seem as though perceptrons are merely a new type of NAND gate.
However, the situation is better than this view suggests. It turns out that we can
devise learning algorithms which can automatically tune the weights and biases of a
network of artificial neurons. This tuning happens in response to external stimuli,
without direct intervention by a programmer. These learning algorithms enable us
to use artificial neurons in a way which is radically different to conventional logic
gates. Instead of explicitly laying out a circuit of NAND and other gates, our neural
networks can simply learn to solve problems, sometimes problems where it would
be extremely difficult to directly design a conventional circuit. The detailed will be
considered in another publication.

3. Sigmoid neurons. (Nielsen, 2015) Learning algorithms sound terrific. But how
can we devise such algorithms for a neural network? Suppose we have a network of
perceptrons that we would like to use to learn to solve some problem. For example, the
inputs to the network might be the raw pixel data from a scanned, handwritten image
of a digit. And we would like the network to learn weights and biases so that the output
from the network correctly classifies the digit. To see how learning might work, sup-
pose we make a small change in some weight (or bias) in the network. What we would
like is for this small change in weight to cause only a small corresponding change in the
output from the network. This property, known as stabilty property, will make learning
possible. Schematically, here is what we want (obviously this network is too simple to
do handwriting recognition):

533

Neural Networks

If it were true that a small change in a weight (or bias) causes only a small change in
output, then we could use this fact to modify the weights and biases to get our network
to behave more in the manner we want. For example, suppose the network was mistak-
enly classifying an image as an “8” when it should be a “9”. We could figure out how to
make a small change in the weights and biases so the network gets a little closer to clas-
sifying the image as a “9”. And then we will repeat this, changing the weights and bi-
ases over and over to produce better and better output. The network would be learning.

The problem is that this is not what happens when our network contains percep-
trons. In fact, a small change in the weights or bias of any single perceptron in the
network can sometimes cause the output of that perceptron to completely flip, say
from 0 to 1. That flip may then cause the behaviour of the rest of the network to
completely change in some very complicated way. So while the “9” might now be
classified correctly, the behaviour of the network on all the other images is likely to
have completely changed in some hard-to-control way. That makes it difficult to see
how to gradually modify the weights and biases so that the network gets closer to
the desired behaviour. Perhaps there is some clever way of getting around this prob-
lem. But it is not immediately obvious how we can get a network of perceptrons to
learn.We can overcome this problem by introducing a new type of artificial neuron
called a sigmoid neuron. Sigmoid neurons are similar to perceptrons, but modified
so that small changes in their weights and bias cause only a small change in their
output. That is the crucial fact which will allow a network of sigmoid neurons to
learn. We shall depict sigmoid neurons in the same way we depicted perceptrons:

Just like a perceptron, the sigmoid neuron has inputs, 1 2, , ...x x But instead of
being just 0 or 1, these inputs can also take on any values between 0 and 1. So, for
instance 0,638 is a valid input for a sigmoid neuron. Also just like a perceptron, the
sigmoid neuron has weights for each input, 1 2, , ...w w and an overall bias b. But the
output is not 0 or 1. Instead, it is σ(w⋅x+b), where σ is called the sigmoid function
(Incidentally, σ is sometimes called the logistic function, and this new class of neu-
rons is called logistic neurons. However, we shall stick with the sigmoid terminol-
ogy.), and is defined by:

1
1 ze

σ -≡
+

.

534

Reinhard Magenreuter

To put it all a little more explicitly, the output of a sigmoid neuron with inputs
1 2, , ...x x , weights 1 2, , ...w w and bias b is

()
1

1 exp j jj
w x b+ - -∑ .

At first sight, sigmoid neurons appear very different to perceptrons. The alge-
braic form of the sigmoid function may seem opaque and forbidding. In fact, there
are many similarities between perceptrons and sigmoid neurons, and the algebraic
form of the sigmoid function turns out to be more of a technical detail than a true
barrier to understanding.

To understand the similarity to the perceptron model, suppose z ≡ w⋅x + b is a
large positive number. Then 0ze- ≈ and so σ(z) ≈ 1. In other words, when z ≡ w⋅x
+ b is large and positive, the output from the sigmoid neuron is approximately 1,
just as it would have been for a perceptron. Suppose on the other hand that z ≡ w⋅x
+ b is very negative. Then ze- → ∞ and σ(z) ≈ 0. So when z ≡ w⋅x + b is very
negative, the behaviour of a sigmoid neuron also closely approximates a percep-
tron. It is only when w⋅x + b is of modest size that there is much deviation from
the perceptron model.

The exact form of σ is not so important. What really matters is the shape of the
function when plotted. The shape in fact is a smoothed out version of a step func-
tion:

 Just like a perceptron, the sigmoid neuron has inputs, But instead of being
just 0 or 1, these inputs can also take on any values between 0 and 1. So, for instance 0,638 is a
valid input for a sigmoid neuron. Also just like a perceptron, the sigmoid neuron has weights for
each input, and an overall bias b. But the output is not 0 or 1. Instead, it is σ(w⋅x+b),
where σ is called the sigmoid function (Incidentally, σ is sometimes called the logistic function, and
this new class of neurons is called logistic neurons. However, we shall stick with the sigmoid
terminology.), and is defined by:

 


.

To put it all a little more explicitly, the output of a sigmoid neuron with inputs ,
weights and bias b is

   
.

At first sight, sigmoid neurons appear very different to perceptrons. The algebraic form of the
sigmoid function may seem opaque and forbidding. In fact, there are many similarities between
perceptrons and sigmoid neurons, and the algebraic form of the sigmoid function turns out to be
more of a technical detail than a true barrier to understanding.
To understand the similarity to the perceptron model, suppose z ≡ w⋅x + b is a large positive
number. Then   and so σ(z) ≈ 1. In other words, when z ≡ w⋅x + b is large and positive, the
output from the sigmoid neuron is approximately 1, just as it would have been for a perceptron.
Suppose on the other hand that z ≡ w⋅x + b is very negative. Then    and σ(z) ≈ 0. So when z
≡ w⋅x + b is very negative, the behaviour of a sigmoid neuron also closely approximates a
perceptron. It is only when w⋅x + b is of modest size that there is much deviation from the
perceptron model.
The exact form of σ is not so important. What really matters is the shape of the function when
plotted. The shape in fact is a smoothed out version of a step function:

If σ had in fact been a step function, then the sigmoid neuron would be a perceptron, since the
output would be 1 or 0 depending on whether w⋅x + b was positive or negative. (Actually, when w⋅x
+ b = 0, the perceptron outputs 0, while the step function outputs 1. So, strictly speaking, we would
need to modify the step function at that one point.) By using the actual σ function we get, as already
implied above, a smoothed out perceptron. Indeed, it is the smoothness of the σ function that is the
crucial fact, not its detailed form. The smoothness of σ means that small changes  in the weights

If σ had in fact been a step function, then the sigmoid neuron would be a percep-
tron, since the output would be 1 or 0 depending on whether w⋅x + b was positive
or negative. (Actually, when w⋅x + b = 0, the perceptron outputs 0, while the step
function outputs 1. So, strictly speaking, we would need to modify the step function
at that one point.) By using the actual σ function we get, as already implied above,
a smoothed out perceptron. Indeed, it is the smoothness of the σ function that is the
crucial fact, not its detailed form. The smoothness of σ means that small changes

jw∆ in the weights and Δb in the bias will produce a small change Δ-outputt in the
output from the neuron. In fact, calculus tells that Δ-output is well approximated by

535

Neural Networks

output output
output j

j j

w b
w b

∂ ∂
∆ ≈ ∆ + ∆

∂ ∂∑ ,

where the sum is over all the weights jw and output

jw
∂

∂
 and output

b
∂

∂
 denote

partial derivatives of the outputoutput with respect to jw and b, respectively. While

the expression above looks complicated, with all the partial derivatives, it is actu-
ally saying something very simple: Δ-output is a linear function of the changes

jw∆ and Δb in the weights and bias. This linearity makes it easy to choose small
changes in the weights and biases to achieve any desired small change in the output.
So while sigmoid neurons have much of the same qualitative behaviour as percep-
trons, they make it much easier to figure out how changing the weights and biases
will change the output.

Obviously, one big difference between perceptrons and sigmoid neurons is that
sigmoid neurons do not just output 0 or 1. They can have as output any real number
between 0 and 1, so values such as 0,173 and 0,689 are legitimate outputs. This can
be useful, for example, if we want to use the output value to represent the average
intensity of the pixels in an image input to a neural network. But sometimes it can
be a nuisance. Suppose we want the output from the network to indicate either “the
input image is a 9” or “the input image is not a 9”. Obviously, it woul be easiest to
do this if the output was a 0 or a 1, as in a perceptron. But in practice we can set up
a convention to deal with this, for example, by deciding to interpret any output of
at least 0,5 as indicating a “9”, and any output less than 0,5 as indicating “not a 9”.

4. Mathematical background, retail case study. As mentioned above, a neural
network in its basic architectural model, consists of three layers: input, hidden and
output. If we remove the hidden layer(s), the neural network becomes a simple
regression (for estimation) or logistic regression (for classification) architectural
model. The input layer for e.g. a retail case study ‘offers’ some input variables like:

+ Recency: # of recent visits to the company’s website and purchases;
+ Frequency: time lag between purchases in the last 6 months;
+ Payment mode used: cash on delivery, credit card, internet banking etc.;
 + Marketing data aggregator’s: life-stage segmentations (i.e. luxury buffs,

up-scale ageing, first-time earners etc.);
+ Last year’s expenditure trend: amount spent last year;
+ Coupon usage pattern of customer.

The output layer, for the classification problem to identify customers who will

respond to campaigns, is 0 for non-responders and 1 for responders. The following

536

Reinhard Magenreuter

expression represents the weighted sum of input variables that the hidden nodes
take as input:

() () 0(Input Hidden)Hidden Node Input VariablesT
ii i

W W→= × +

“To begin with, the above weights Wi (Input→Hidden) & W0 are chosen at
random, then they are modified iteratively to match the desired outputs (in output
layer)”…” In the hidden layer, the above linear weighted sum [(Hidden Node)i]
is converter to non-linear form through a non-linear function. This conversion is
usually performed using the sigmoid activation function, yes this is the same logit
function of the logistic regression. The following expression represents this pro-
cess:

()
()

()

Hidden Node

Hidden Node
Hidden

1

i

i
j

e
P

e
=

+ ,
where 0 ≤ P(Hidden)j ≤ 1; these output [P(Hidden)j] for the different hidden nodes
(j) becomes the input variables for the final output node. As described below:

() () 0()Output HiddenT
i Hidden Output j

U P U→= × +

This linear weighted output is again converted to non-linear form through sig-
moid function. The following is the probability of conversion of a customer P (Cus-
tomer Response) based on his/her input variables:

()
()

()

Output

Output
Customer Response

1

e
P

e
=

+
.

Neural network algorithms (like back propagation) iteratively modify weights
for both links (i.e. Input→Hidden→Output) to reduce the error of prediction.
Remember the weights for our architect are weights Wi(Input→Hidden), W0 weights
Uj(Hidden→Output) & U0 .”

1

5. Popular Example. Example for generalization: if we meet a person, who is, let us
say 30 meters away, our brain generalizes with direct access, if this person could be e.g.
a former classmate we met last time 20 years ago. It is not necessary to access our whole
data base of persons we ever met in our life from a to z. The same, artificial neural net-
works are able to achieve, because they work with the principle of ‘maximal similarity’.
Let us say a neural network shall ‘decide’ which animal is presented to a camera as
input. Some animals have been trained before. The learned attributes were: long tail, he
has four legs, he has wings, he can fly and he eats mice. That is a cat, because a cat has
three, the maximum features: he has a long tail, he eats mice and he has four legs. A fish,
a bird and a penguin have less features, a fish 0, a bird 2 and a penguin 1.

Since the early 1980s several experiments to use neural networks for valuations
and forecast tasks for the financial markets have been executed. Since that time the
authors explores them and adapt them for forecast challenges with growing success

537

Neural Networks

over the years. Following, we will expose an interesting task of neural networks for
detecting if a bank will go bankrupt or not in the near future.

To forecast, if a bank will go bankrupt or not during the next year or the next two years
is quite good solvable with neural networks. The data material had been divided into two
groups of banks, one with data one year forerun and one with two years forerun, referred
of the time they went bankrupt. A dissociation between ‘bankrupt’ and ‘not bankrupt’ took
place by four control measures: a) asset size; b) number of branches; c) age and d) charter
status. There could be selected for both forerun times each 118 banks (59 went bankrupt,
59 did not went bankrupt), out of the basis data set. The status ‘bankrupt’ or ‘not bankrupt’
will be described by the following 19 financial operating numbers:

1. Capital/assets
2. Agricultural production & farm loans + real estate loans secured by farm land/

net loans and leases
3. Commercial and industrial loans/met loans and leases
4. Loans to individuals/net loans and leases
5. Real estate loans/net loans and leases
6. Total loans 90 days or more past due/net loans and leases
7. Total non-accrual loans & leases/net loans and leases
8. Provision for loan losses/average loans
9. Net charge-offs/average loans
10. Return on average assets
11. Total interest paid on deposits/total deposits
12. Total expense/total assets
13. Net income/total assets
14. Interests and fees on loans + income from lease financing rec/net loans &

leases
15. Total income/total expense
16. Cash + U.S. treasury & government agency obligations/total assets
17. Federal funds sold + securities/total assets
18. Total loans & leases/total assets
19. Total loans & leases/total deposits
(Tam & Kiang, 1990)
This selection criterions has been Capital, Asset, Management, Equity and Liquid-

ity, which can be used to predict a potential bankruptcy. The detailed analysis model of
Mr. Tam can be read in (Tam & Kiang, 1990), see above. This 19 input neurons have
been associated with two output-neurons: > 0,5 non-failed banks, < 0,5 failed banks.

Compared to the classical discriminant analysis the results of the neural networks
surpassed them by far. The best error classification was 14,8 % for the one year forerun,
respectively 85,2 % were correct.

As for analyzing and predicting financial markets, we need a couple of meaningful
fundamental data (not derived mathematically), which can be taken as indicators for

538

Reinhard Magenreuter

our target time-series. Such data can be: Interest indicators, interest sensitive indicators,
prime rates, money supply data, gold prize, inflation data, economic cycle indicators,
balance of payments, fundamental stock data like price/earnings rate, dividend pay-
ments, sentiment indicators etc.

Neural Networks are applied in different economic areas like: business finance,
financial management, public finance, quantitative finance, rating modelling for e.g.
bonds, stocks and properties and portfolio management, where time series forecasting
is the highest challenge, because the factor ‘time’ is added to a relative simple ‘two-
dimensional’ classification task.

Neural Networks differ a lot in their network-topology and adjustable parameters
like e.g. learning rate and number of neurons. To deal with this challenge, we need to
implement a genetic algorithm, which examines a huge space of ranges of such param-
eters. Such a powerful optimization algorithm will be presented in another publication.

“We like so much to read into the future, because we want to
lead to us
through calm wishes, the mystical, which sways in it.”

(J.W. Goethe)

NOTES
1. Roopam Upadhyay, International Finance Corporation, YOU CANalytics
2. J.W. Goethe, Maximen und Reflexionen V

 REFFERENCES
Magenreuter, R. (2016). Forecasting of time-series for fianncial markets.

Mathematics and Informatics, 59 (5).
Tam, K. & Kiang, M. (1990). Predicting Bank Failures: A neural Network

Approach. Applied Artificial Intelligence, 4, pp. 265 – 282
Grozdev, S. (2007). For high achievements in mathematics. The Bulgarian

experience (Theory and practice). Sofia: ADE.
Nielsen, M. (2015). Neural networks and deep learning. Determination

Press. (This work is licensed under a Creative Commons Attribution-
NonCommercial 3.0 Unported License. This means you’re free to copy,
share, and build on this book, but not to sell it.)

 Mr. Reinhard Magenreuter, PhD student
University of Finance, Business and Entrepreneurship

1, Gusla St.
1618 Sofia, Bulgaria

E-mail: rm@pariserplatz.eu

