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Abstract. There are four backbones to analyze time-series in general and fore-
cast time-series for financial markets: Chaos-theory, Fuzzy logic, Neural networks 
and Genetic algorithms. The first one is considered in (Magenreuter, 2016a), while 
te third one in (Magenreuter, 2016b). The present paper is dedicated to the second 
one analyzing posibilities for its application. Some results are discussed in promis-
ing outcomes.
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1. Introduction. “Type of reasoning is based on the recognition that logical 
statements are not only true or false (white or black areas of probability) but can 
also range from ‘almost certain’ to ‘very unlikely’ (gray areas of probability). Soft-
ware applying fuzzy-logic (as compared with that based on Formal Logic) allows 
computers to mimic human reasoning more closely, so that decisions can be made 
with incomplete or uncertain data. The concept is based on the work of the Polish 
mathematician Jan Lukasiewicz (1878 – 1956) and was developed by the Azerbai-
jani-Iranian computer scientist Dr. Lotfi A. Zadeh (born 1921) who coined the term 
‘fuzzy logic’ in 1965 while working at the Berkeley campus of the University of 
California.” (source: business dictionary)

It was Prof. Lotfi Zadeh who has found, that humans can handle fuzzy sets much 
easier, than the conventional set theory of Georg Cantor, because it can handle and 
process imprecise data. Fuzzy Logic has become popular due to its success in in-
dustrial applications, particularly in Japan.

Terms like ‘a little bit less’, ’a little bit more’, approximately all, very positive, 
positive, neutral, negative and very negative are for us humans easy to express. 
Technical applications with tasks of regulations cannot be imagined without Fuzzy 
sets anymore. Each modern washing machine or camera cannot be thought without 
a fuzzy logic control chip.

Example 1: Bob is 65 years old. Is Bob old? In Boolean logic (True or False). In 
Fuzzy logic (False, True or degree of oldness).

Many events or facts have such fuzzy truth values, like:
– How big does a pond have to be to qualify as a lake?

Educational Technologies 
Образователни технологии



658

Reinhard Magenreuter

– How much of an apple do you have to eat for what is left to no  longer count 
as an apple?

– How broken has a ship to be in order to be called a wreck?
– What amount of hair loss categorizes you as bald?

Example 22: In a traditional bivalent logic system an object either is or is not 
a member of a set. The idea of fuzzy sets is that the members are not restricted 
to true or false definitions. A member in a fuzzy set has a degree of membership 
to the set. For example, the set of temperature values can be classified using a 
bivalent set as either hot or not hot. This would require some cut-off value where 
any temperature greater than that the cut-off value is ‘hot’ and any temperature 
less than that value is ‘not hot’. If the cut off point is at 500 C then this set does 
not differentiate between a temperature that is 200 C and a temperature of 490C. 
They are both ‘not hot’

2. Mathematical background. More than 50 years old denotes a crisp set 
standard set = characteristic function. In classical mathematics one deals with 
collections of objects called (crisp) sets. Sometimes it is convenient to fix some 
universe U in which every set is assumed to be included. It is also useful to think 
of a set A as a function from U which takes value 1 on objects which belong to 
A and 0 on all the rest. Such function is called the characteristic function of A, 
χA: χA(x) = def (1 if x ∈ A and 0 if x ∉A). So there exists a bijective correspondence 
between characteristic functions and sets. 

Let X be the set of all real numbers between 0 and 10 and let A = [5, 9] be the 
subset of X of real numbers between 5 and 9. This results in the following figure: 

where any temperature greater than that the cut-off value is ‘hot’ and any temperature less than that 
value is ‘not hot’. If the cut off point is at 500 C then this set does not differentiate between a 
temperature that is 200 C and a temperature of 490C. They are both ‘not hot’ 
 
2. Mathematical background. More than 50 years old denotes a crisp set standard set = 
characteristic function. In classical mathematics one deals with collections of objects called (crisp) 
sets. Sometimes it is convenient to fix some universe U in which every set is assumed to be 
included. It is also useful to think of a set A as a function from U which takes value 1 on objects 
which belong to A and 0 on all the rest. Such function is called the characteristic function of A,  
χA: χA(x) = def (1 if x ∈ A and 0 if x   A). So there exists a bijective correspondence between 
characteristic functions and sets.  

Let X be the set of all real numbers between 0 and 10 and let A = [5, 9] be the subset of X of 
real numbers between 5 and 9. This results in the following figure:  
 
 
 
 
 
 
  
 
 
 
Fuzzy sets generalize this definition, allowing elements to belong to a given set with a certain 
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Fuzzy sets generalize this definition, allowing elements to belong to a given set 
with a certain degree. Instead of considering characteristic functions with value in 
{0, 1} we consider now functions valued in [0, 1]. A fuzzy subset F of a set X is a 
function µF (x) assigning to every element x of X the degree of membership of x to 
F: x ∈ X → µF (x) ∈ [0, 1].



659

Fuzzy Logic

Let, as above, X be the set of real numbers between 1 and 10. A description of 
the fuzzy set of real numbers close to 7 could be given by the following figure:

where any temperature greater than that the cut-off value is ‘hot’ and any temperature less than that 
value is ‘not hot’. If the cut off point is at 500 C then this set does not differentiate between a 
temperature that is 200 C and a temperature of 490C. They are both ‘not hot’ 
 
2. Mathematical background. More than 50 years old denotes a crisp set standard set = 
characteristic function. In classical mathematics one deals with collections of objects called (crisp) 
sets. Sometimes it is convenient to fix some universe U in which every set is assumed to be 
included. It is also useful to think of a set A as a function from U which takes value 1 on objects 
which belong to A and 0 on all the rest. Such function is called the characteristic function of A,  
χA: χA(x) = def (1 if x ∈ A and 0 if x   A). So there exists a bijective correspondence between 
characteristic functions and sets.  

Let X be the set of all real numbers between 0 and 10 and let A = [5, 9] be the subset of X of 
real numbers between 5 and 9. This results in the following figure:  
 
 
 
 
 
 
  
 
 
 
Fuzzy sets generalize this definition, allowing elements to belong to a given set with a certain 
degree. Instead of considering characteristic functions with value in {0, 1} we consider now 
functions valued in [0, 1]. A fuzzy subset F of a set X is a function µF (x) assigning to every 
element x of X the degree of membership of x to F: x ∈ X → µF (x) ∈ [0, 1]. 

Let, as above, X be the set of real numbers between 1 and 10. A description of the fuzzy set 
of real numbers close to 7 could be given by the following figure: 
 
 
 
 
 
 
 
 
 

O 
5 9 

1 

x 

O 

1 

9 5 

x 

In classical set theory there are some basic operations defined over sets. Let X 
be a set and P(X) be the set of all subsets of X or, equivalently, the set of all func-
tions between X and {0, 1}. The operation of union, intersection and complement 
are defined in the following ways:

A ∪ B = {x | x ∈ A or x ∈ B}, i.e. χA∪B(x) = max{χA(x), χB(x)}
A ∩ B = {x | x ∈ A and x ∈ B}, i.e. χA∩B(x) = min{χA(x), χB(x)}
A’ = {x | x ∉  A}, i.e. χA’(x) = 1 − χA(x)
The law χA ∪ B(x) = max{χA(x), χB(x)} gives us an obvious way to generalize 

union to fuzzy sets. Let F and S be fuzzy subsets of X given by membership func-
tions µF and µS:
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Analogously for intersection: χA ∩ B(x) = min{χA(x), χB(x)}. We set
µF ∩ S(x) = min{µF (x), µS(x)}.

Finally the complement for characteristic functions is defined by,  
χA’(x) = 1 − χA(x). We set

µF’(x) = 1 − µF (x).
Let us go back for a while to operations between sets and focus on intersection. 

We defined operations between sets inspired by the operations on characteristic 
functions. Since characteristic functions take values over {0, 1} we had to choose 
an extension to the full set [0, 1]. It should be noted, though, that also the product 
would do the job, since on {0, 1} they coincide:

χA ∩ B(x) = min{χA(x), χB(x)} = χA(x) · χB(x).

So our choice for the interpretation of the intersection between fuzzy sets was a 
little illegitimate. Further we have χA ∩ B(x) = min{χA(x), χB(x)} = max{0, χA(x) 
+ χB(x) − 1}. It turns out that there is an infinity of functions which have the same 
values as the minimum on the set      {0, 1}. This leads to isolate some basic prop-
erty that the our functions must enjoy in order to be good candidate to interpret the 
intersection between fuzzy sets.

3. Mathematical representation. Let V be the universe under consideration.  
A fuzzy set A is represented by a function μA: V → [0, 1].

 + μA is called the membership function;
 + μA (x) is called the grade of membership of x w.r.t. A;
 + μA (x) is also called the degree of truth of the proposition that x is an   

    element of A;
 + {x ∈ V: μA (x) > 0} is called the support of A.
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It is simple to provide analytic expressions that give a (stepwise) linear approxi-
mation to the three membership functions:

 
Figure. Membership function

“The justification of degrees of truth/membership is a weak point of fuzzy logic.
– Justification of degrees of beliefs in terms of betting behavior (fair bets). How-

ever, we cannot bet on fuzzy expressions: – I bet you $5 that the patient is older 
than 30 – ?? I bet you $5 that the patient is old.

– In some sense, fuzzy logic makes a vague expression too precise by insisting 
on a numerical description.

– For atomic sentences it may be a reasonable strategy to ask a large number of 
people what they think of a proposition like “this person is old” and take the average.

– However, this cannot work for compound sentences since frequencies do not 
behave truth-functionally.

– In fuzzy control the problem is different: start with discrete values and fuzzify 
it. E.g. 45 for age can be mapped on the set {0, 0.2, 1, 0,2, 0} corresponding to the 
fuzzy sets {very young, young, middle aged, old, very old}” (cf. Blunter).

As mentioned above, we may use fuzzy logic to pre-process a huge amount of 
financial data in form of up to 240 time-series, which act as indicators correlated 
to the desired target. The point of view is, that this is the adequate technique, to 
capture data, which are related to the others, to their environment.

If we drive by car with 60 km/h on a highway on the left line, where 120 km/h is 
allowed, we drive much too slow, if there is not a construction site. If we drive by 
car with 60 km/h on a playstreet, where only 30 km/h are allowed, we drive much 
too fast. In both cases we drive absolute viewed 60 km/h, but if we put this absolute 
value in relation to its environment, we can describe the value 60 km/h much more 
correct in its effect.
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4. Popular Examples. Famous are the Metros in Sendai and later in Tokyo, 
where the start, accelerate and brake regulation is achieved very smooth. Since 
there are many successful applications in process control tasks in the industry, there 
are other interesting experiments with financial market data. Very easy an expert 
can e.g. develop a rule based trading or buy and sell decision system. Like: if the 
2 year yield of US bonds last week fell quite a lot, the stock prices correlated to 
bonds will fall within the next two weeks moderately. The amount of such correla-
tions is limited only by the computing power and a good or less good programmed 
software.

 

Figure. Scheme of a fuzzy regulation control system

Following is a descriptive task, which the fuzzy set method can deal with quite 
easily:

Given is the set of swimmers and a set of golfers, which members are all living 
in one apartment house. One estimates with how much percent one set is within 
another set:

TINA MIKE GREG SUE  TOGETHER
Swimmer 0,8 0,7 0,9  0,2 2,6
Golfer 0 0,9 0,4  0,8 2,1
Both  0 0,7 0,4  0,2 1,3
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According to that, there are 2,6 Swimmers, 2,1 Golfers and 1,3 people, who are 
both. Thus 1,3 of  swimmers are golfers, swimmers are 1,3|2,6, or 0,5, a subset of 
golfers. Equally 1,3 of the 2,1 golfers are swimmers, this golfers are for 1,3|2,1, or 
0,62 a subset of swimmers.

This concept extents the fundament, on which fuzzy logic is based on. It shows, 
that principles which master a variety of sets, regulates the individual grade of 
membership, as well. The limits of fuzziness extend (Kosko, 1986).

“The basic fuzzy logic control system is composed of a set of input membership 
functions, a rule-based controller, and a defuzzification process. The fuzzy logic 
input uses member functions to determine the fuzzy value of the input. There can 
be any number of inputs to a fuzzy system and each one of these inputs can have 
several membership functions. The set of membership functions for each input can 
be manipulated to add weight to different inputs. The output also has a set of mem-
bership functions. These membership functions define the possible responses and 
outputs of the system. The fuzzy inference engine is the heart of the fuzzy logic 
control system. It is a rule based controller that uses If-Then statements to relate the 
input to the desired output. The fuzzy inputs are combined based on these rules and 
the degree of membership in each function set. The output membership functions 
are then manipulated based on the controller for each rule. Several different rules 
will usually be used since the inputs will usually be in more than one membership 
function. All of the output member functions are then combined into one aggregate 
topology. The defuzzifaction process then chooses the desired finite output from 
this aggregate fuzzy set. There are several ways to do this such as weighted aver-
ages, centroids, or bisectors. This produces the desired result for the output.”2

5. Another example.
All oak trees wear acorns.

This tree wears acorns.
This tree is an oak tree.

The most people will agree to the above logical inherence than to the 
following:

All basketball professionals are very tall.
Bob is very tall.

Bob is a basketball professional.

Both examples are in its logical structure identical, but our knowledge about 
the background/environment is different. Only oak trees wear acorns. However, we 
know many tall men, who are no basketball professionals, why many counterexam-
ples come us to mind: The knowledge dominates the conclusion in our all day life.

As explained, the fuzzy logic set analysis method can be applied to many dif-
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ferent tasks and scientific research fields. We use fuzzy logic for pre-processing 
my financial time-series. All data of the desired time-series and all indicators are 
correlated within a ‘fuzzy-matrix’. Simply explained: data point of indicator 1 at 
time t0 correlates very negative to target point at time t0+12 (12 step ahead forecast), 
data point of indicator 2 at time t0 correlates positive to target point at time t0+12 (12 
step ahead forecast) and so on. In our explorations we use up to 240 fundamental 
indicators which are correlated in this way. And, they are not only correlated to 
the target, they are inter-correlating, as well! Similar it is with financial markets: a 
Euro/Dollar parity of 1.1160 as indicator for the S&P 500 index, Friday last week, 
has another impact to the S&P 500, if it ends exactly with the same value, 1.1160, 
this Friday, because the environment has changed!

“So far as the laws of mathematics refer to reality, they are not
certain. And so far as they are certain, they do not refer to reality.’’

(Albert Einstein, 1921)
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