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Abstract. The present paper considers a proof of the Euler-Gergonne’s theorem 
and its application to  two assertions.
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The great Swiss mathematician Leonhard Euler (1707 – 1783) is well known 
as the discoverer of many interesting and important facts and theorems in Geome-
try. We will mention two of them in the sequel.

Theorem 1. The circumcentre O, the centroid T and the orthocentre H of an 
arbitrary triangle ∆ABC are colinear (the common line of the three points is known 
to be the Euler‘ s line of the triangle). The distance |HT| between the orthocentre H 
and the centroid T  is two times greater than the distance |TO| between the centroid 
T and the circumcentre O, i.e. HT 2 TO= .

Theorem 2. The distance d between the circumcentre O and the incentre I of a 
traingle ABC∆  is given by the formula:

22 2d OI R 2Rr= = − ,
where R and r are the radii of these circles, respectively.

The proofs of the above theorems could be found in textbooks and books like: 
(Arslanagić, 2005), (Lopandić, 1971), (Malcheski, Grozdev & Anevska, 2017) and 
(Palman, 1994). It is also known in the Geometry of traingle the theorem of Ger-
gonne (Joseph Diaz Gergonne (1771 – 1859) is a French astronom and mathema-
tician), which says:

Theorem 3. The lines which connect the vertices A,B and C of a triangle ∆ABC  
with the points of tangency X,Y and Z of the incircle with the opposite sides of the 
triangle, respectively are conccurent (the commonn point G is known to be the 
Gergonne‘ s point).
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The proof of this theorem could be found in (Lopandić, 1971) and (Palman, 
1994).

We will mention another theorem in the present paper, known in the mathemati-
cal literature on the Geometry of triangle as Euler-Gergonne‘ s theorem. A proof of 
this theorem will be proposed and some interesting applications of it.

Theorem 4. Given is a triangle ABC∆  and let the segments AX , BY  and CZ  be 
conccurent, where X BC, Y AC∈ ∈  and Z∈AB. If AK BKu , v

KX KY
= =  and CKw

KZ
= , then:

                                     (1)         1 1 1 1
1 1 1u v w

  
  
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Fig.1
Let 1 2 3 4 5F ,F ,F ,F ,F  and 6F  be the areas of the triangles 

AKZ , BKZ , BKX , CKX , CKY∆ ∆ ∆ ∆ ∆  and AKY∆  (Figure 1.). Using the formula for the 
area of a triangle, we get:

                                  (2)         
 

5 61 2

3 4

F FF FAKu
KX F F

++
= = = , 

                                      
                                   (3)

        
3 4 1 2

5 6

F F F FBKv
KY F F

+ +
= = =

,
                                      

                                    (4)       5 6 3 4

1 2

F F F FCKw
KZ F F

+ +
= = = .                                      

 
If F  is the area of the triangle ABC∆ , then 1 2 3 4 5 6F F F F F F F= + + + + +  and it 

follows that:

3 3 4 3 44

1 2 3 4 5 6 1 2 3 4 5 6

1
1

F F F F FF
u F F F F F F F F F F F F F

+ +
= = = =

+ + + + + + + + + +
,
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5 6 5 6 5 6

3 4 5 6 1 2 3 4 5 6 1 2

1
1

F F F F F F
v F F F F F F F F F F F F F

+ +
= = = =

+ + + + + + + + + +
,

1 2 1 2 1 2

1 5 6 2 3 4 1 5 6 2 3 4

1
1

F F F F F F
w F F F F F F F F F F F F F

+ +
= = = =

+ + + + + + + + + +
.

Summing up the above three equations, we obtain (1).

By means of relation (1) we will prove the following two assertions:

Assertion 1. Given is an acute triangle  ∆ABC . Let the points D,E and F be the 
feet of the altitudes from the vertices A,B and C to the sides BC,CA and AB, respec-
tively, and let H be the orthocentre of the triangle. Then:

                                     (5)               2AH BH CH
AD BE CF

+ + = .                                      

Proof: We will prove the more general assertion, which states, that:

                                  (6)                2AK BK CK
AX BY CZ

    ,                              
where the points X ,Y ,Z  and K  have the same meaning as in the proof of Theorem 
4. If AK BKu , v

KX KY
= =  and CKw

KZ
= , then

                                      (7)       
11

AK
AK AK uKX

AKAX AK KX u
KX

= = =
+ ++

,                                 

                                       (8)     
11

BK
BK BK vKY

BKBY BK KY v
KY

= = =
+ ++

,                                

                                       (9)   
11

CK
CK CK wKZ

CKCZ CK KZ w
KZ

= = =
+ ++

.                      

Further, using (1), we obtain:
1 1 1 1 1 13 1 2
1 1 1 1 1 1 1 1 1

u v w u v w .
u v w u v w u v w

+ + +   − = + + − + + ⇔ = + +   + + + + + + + + +   
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It follows from (7), (8) and (9), that:

2AK BK CK
AX BY CZ

    

and we are done. Take now K H , X D, Y E≡ ≡ ≡  and Z F≡ . Thus, we get (5).

Assertion 2. Let P be an arbitrary point in the interior of a triangle ∆ABC and 
let the lines AP,BP and CP intersect the sides BC,CA and AB in the points X,Y and 
Z, respecvtively. Prove that:

                              (10)             12PA PB PB PC PC PA
PX PY PY PZ PZ PX

⋅ + ⋅ + ⋅ ≥ .                        

Proof: Let PA PBu ,v
PX PY

= =  and PCw
PZ

= . The inequality is equivalent to:

                                (11)                12uv vw wu+ + ≥ .                                        
We have

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1

v w u w u v u v w ,
u v w

+ + = ⇔ + + + + + + + + = + + +
+ + +

which is equivalent to 
                                      (12)            2u v w uvw+ + + = .         
Apply now the arithmetic-harmonic inequalty:

	

       
1 1 1 3 1 1 11 1 1 9

1 1 13 1 1 1
1 1 1

u v w
u v w

u v w
u v w

                    
  

 .

By means of (1) we get 3 9u v w     , i.e.

                                    (13)                 6u v w    .                                           
By (12) and (13) we have:

                                      (14)                8uvw ≥ .                                              

Finally, we apply the arithmetic-geometric inequalty:

3

3
uv vw wu uv vw wu+ +

≥ ⋅ ⋅ , i.e.

3 2 2 2 33 3 64 12uv vw wu u v w uv vw wu uv vw wu+ + ≥ ⇔ + + ≥ ⇔ + + ≥ ,
and we are done.



75

Euler-Gergonne’ S Theorem...

The equality in (11) holds true iff 2u v w= = = , i.e.  iff   2PA PB PC
PX PY PZ

= = = , i.e. 

when the point P  is the centroid of the equilateral triangle ABC∆ .
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