Математика и информатика Volume 62, Number 1, 2019 Mathematics and Informatics

Educational Technologies Образователни технологии

PROBLEM 6. FROM IMO'2018

¹⁾Sava Grozdev, ²⁾Veselin Nenkov

¹⁾ University of Finance, Business and Entrepreneurship – Sofia (Bulgaria) 2) "Nikola Vaptsarov" Naval Academy – Varna (Bulgaria)

Abstract. The International Mathematical Olympiad is one of the respectable events and one of the most long-lived international educational and scientific competitions. It is the largest, oldest and most prestigious scientific Olympiad for high school students. The 59th edition of the event took place in Cluj-Napoca, Romania, 3-14 July 2018. The present paper is dedicated to the sixth problem on the Olympiad paper. A detailed analysis of the problem is proposed in a methodological way, which will be useful for students and teachers in the preparatory process for future participations in mathematical competitions.

Keywords: Olympiad; problem solving

The problem 6 on the paper of the 59th International mathematical Olympiad was solved fully (7 points) by 18 participants, 5 students were marked with 6 points, 2 with 5 points, 5 with 4 points, 11 with 3 points, 26 with 2 points, 108 with 1 point and 419 with 0 points. The mean result of all the 594 participants in the Olympiad from 107 countries is 0. 638, which shows that the problem is hard and needs a detailed analysis.

Problem 6. A convex quadrilateral *ABCD* satisfies AB.CD = BC.DA. Point *X* lies inside *ABCD* so that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA$. Prove that $\angle BXA + \angle DXC = 180^{\circ}$.

Lemma 1. Each convex quadrilateral has a unique interior point X such that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA$.

Proof: The following cases are possible:

1) If ABCD is a parallelogram, then the point X is the intersection point of the diagonals. This follows from the equality of the cross-opposite angles of the parallelogram. Reversely, the equality of the mentioned angles implies that the point X should belong to each of the diagonals and consequently it belongs to both the diagonals simultaneously. Thus the point X is unique. 2.1) If *ABCD* is a trapezoid with $AB \parallel CD$ and $BC \cap AD = W$, then the common point of the diagonal *AC* and the circumcircle k(BDW) of ΔBDW is the desired point *X*. The proof is the following:

i)
$$\angle XAB = \angle XCD$$
 (cross-opposite angles);
ii) $\angle XBC = \frac{\widehat{XDW}}{2} = \frac{\widehat{XD} + \widehat{DW}}{2} = \angle XDA$.

Reversely, the equality $\angle XAB = \angle XCD$ implies, that the point X belongs to the diagonal AC, while the equality $\angle XBC = \angle XDA$ is verified when X is on the circle k(BDW). Since AC and k(BDW) have only one common point, which is in the interior of ABCD, then the point X is unique. The second intersection point Y of the line AC and k(BDW) is such, that $\angle YAB = 180^\circ - \angle YCD$ and $\angle YBC = 180^\circ - \angle YDA$.

2.2) If *ABCD* is a trapezoid with *BC* || *AD* and *AB* \cap *CD* = *V*, then the common point of the diagonal *BD* and the circumcircle k(ACV) of ΔACV is the desired point *X*. The proof is the following:

i)
$$\angle XAB = \frac{\widehat{XCV}}{2} = \frac{\widehat{XC} + \widehat{CV}}{2} = \angle XCD$$
;
ii) $\angle XBC = \angle XDA$ (cross-opposite angles).

The uniqueness of the point X could be proved in the same manner as in the previous case. The second common point Y of the line BD and k(ACV) is such, that $\angle YAB = 180^\circ - \angle YCD$ and $\angle YBC = 180^\circ - \angle YDA$.

3) If *ABCD* is without parallel sides and $AB \cap CD = V$, $BC \cap AD = W$, then the interior point of *ABCD*, which is the intersection point of the circumcircles k(ACV) and k(BDW) of ΔACV and ΔBDW , respectively, is the desired point X. The proof is the following:

Reversely, the equality $\angle XAB = \angle XCD$ means, that the point X belongs to the circle k(ACV), while the equality $\angle XBC = \angle XDA$ is verified when X is on the circle k(BDW). Since AC and k(BDW) have only one common point, which is in the interior of ABCD, then the point X is unique. The second intersection point Y of k(ACV) and k(BDW) is such, that $\angle YAB = 180^\circ - \angle YCD$ and $\angle YBC = 180^\circ - \angle YDA$.

Lemma 2. If the sides of the convex quadrilateral ABCD satisfy the equality AB.CD = BC.DA, then:

a) the angular bisectors of the angles ABC and CDA meet in the point I from the diagonal AC;

b) the angular bisectors of the angles BAD and DCB meet in the point I' from the diagonal BD.

Proof: Rewrite the given equality in the form $\frac{BA}{BC} = \frac{DA}{DC}$. If *I* is such a point on the diagonal *AC*, that $\frac{IA}{IC} = \frac{BA}{BC}$, then *BI* is the angular bisector of $\angle ABC$. On the other hand, the equality $\frac{IA}{IC} = \frac{DA}{DC}$ is true, which means, that *DI* is the angular bisector of $\angle CDA$. The assertion b) could be obtained analogously.

In fact, if $BA \neq BC$, then there exists a point J on the line BC with the property $\frac{JA}{JC} = \frac{BA}{BC}$. The circle ω with diameter IJ is the locus of the points M, for which $\frac{MA}{MC} = \frac{BA}{BC}$. The circle ω is known to be the *Apollonius circle* for the segment AC under the ratio $\frac{BA}{BC}$. For this reason, if an arbitrary ΔABC is given, then the point D from the Apollonius circle ω is the fourth vertex of the quadrilateral ABCD, for which AB.CD = BC.DA. In such a way we come upon an idea for the construction of a quadrilateral satisfying the conditions of the problem under consideration. On the other hand, lemma 1 gives a possibility to construct the point X for this quadrilateral.

Lemma 3. Let ABC be an arbitrary triangle, while B_1 and B_2 be such points on the line AC, that the lines BB_1 and BB_2 are symmetric with respect to the

angular bisector of
$$\angle ABC$$
. Then $\frac{\overline{CB_1}}{\overline{AB_1}} \cdot \frac{\overline{CB_2}}{\overline{AB_2}} = \frac{BC^2}{AB^2}$.

Proof: For the areas of the triangles BCB_1 and BAB_2 we have, that $\frac{S_{BCB_1}}{S_{BAB_2}} = \frac{CB_1}{AB_2}$ and $\frac{S_{BCB_1}}{S_{BAB_2}} = \frac{BC.BB_1.\sin \angle B_1BC}{AB.BB_2.\sin \angle B_2BA} = \frac{BC.BB_1}{AB.BB_2}$. Consequently $\frac{CB_1}{AB_2} = \frac{BC.BB_1}{AB.BB_2}$.

Analogously, using the areas of the triangles CBB_2 and ABB_1 we get the equality $\frac{CB_2}{AB_1} = \frac{BC.BB_2}{AB.BB_1}$. Multiplying the obtained equalities we find, that $\frac{CB_1}{AB_1} \cdot \frac{CB_2}{AB_2} = \frac{BC^2}{AB^2}$.

Lemma 4. If the convex quadrilateral ABCD satisfies the equality AB.CD = BC.DA, then:

a) the symmetric images of the diagonal BD with respect to the angular bisectors of $\angle ABC$ and $\angle CDA$ meet in a point K from the diagonal AC;

b) the symmetric images of the diagonal AC with respect to the angular bisectors of $\angle BAD$ and $\angle DCB$ meet in a point K' from the diagonal BD.

Proof: Denote by *U* the common point of the diagonals *AC* and *BD*. Let the symmetric images of *BD* with respect to the angular bisectors of $\angle ABC$ and $\angle CDA$ meet *AC* in the points K_1 and K_2 , respectively. Applying lemma 3 to $\triangle ABC$ we obtain the equality $\frac{CU}{AU} \cdot \frac{CK_1}{AK_1} = \frac{BC^2}{AB^2}$. Applying lemma 3 to $\triangle CDA$ we obtain $\frac{AU}{CU} \cdot \frac{AK_2}{CK_2} = \frac{DA^2}{CD^2}$. Multiplying the two equalities we deduce, that $\frac{CK_1 \cdot AK_2}{AK_1 \cdot CK_2} = \left(\frac{BC \cdot DA}{AB \cdot CD}\right)^2 = 1$. Therefore, $\frac{AK_2}{CK_2} = \frac{AK_1}{CK_1}$. Since the points K_1 and

 K_2 belong to the segment AC, the last equality means, that the points K_1 and K_2 coincide. The assertion for the point K' could be proven analogously.

It follows from lemma 4 that the point I is the center of the incircle of $\triangle BDK$. Thus, AC is the angular bisector of $\angle BKD$. Consequently $180^\circ = \angle AKD + \angle DKC = \angle AKD + \angle BKC$. Thus we obtain the following

Conclusion. The equalities $\angle AKD + \angle BKC = 180^{\circ}$ and $\angle BK'A + \angle CK'D = 180^{\circ}$ are satisfied.

Lemma 5. If the convex quadrilateral ABCD satisfies the equality AB.CD = BC.DA, then:

a) The second common point X of the circumcircles k(BCK) and k(DAK)of ΔBCK and ΔDAK , respectively, is such that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA$.

b) The second common point X of the circumcircles k(BCK') and k(DAK') of $\Delta BCK'$ and $\Delta DAK'$, respectively, is such that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA$.

Proof: We will consider the first case only. Let $AB \cap AD = V$ and the second common point of k(BCK) and k(DAK) be X. In order to prove the first equality it is enough to establish, that the point X belongs to the circumcircle k(ACV) of ΔACV (as shown in lemma 1). The following equalities are true:

102

$$\angle CXA = \angle CXK + \angle KXA = 180^{\circ} - \angle CBK + \frac{AK}{2} = 180^{\circ} - \angle DBA + \angle ADK =$$
$$= \angle DBV + \angle BDV = 180^{\circ} - \angle AVD$$

Consequaently $\angle CXA + \angle AVD = 180^\circ$. This equality means that the point X belongs to the circumcircle of $\triangle ACV$. For this reason $\angle XAB = \angle XCD$. The second equality could be obtained in the following way: $\angle XBC = \frac{\widehat{XC}}{2} = \angle XKC = 180^\circ - \angle AKX = \angle XDA$.

The assertion for the other couple of circles under the condition $AD \cap BC = W$ could be proven in the same way.

If $AB \parallel CD$ and the second common point of k(BCK) and k(DAK) is X, as in the case just considered, we obtain $\angle CXA = 180^\circ - \angle DBA + \angle BDC = 180^\circ$. This means that the points C, X and A are collinear, i.e. the point X is on the diagonal AC. Consequently, the common points X and K of the circles k(BCK)and k(DAK) are on the diagonal AC. But the circle k(BCK) intersects the line AC in the point C. Since a circle and a line could have no more than two common points, then the point X coincides with K. Therefore, in this case the circles k(BCK) and k(DAK) are tangent at the point X.

Analogously, if $AD \parallel BC$, the circles k(BCK') and k(DAK') are tangent at the point $X \equiv K'$.

Solution of problem 6: If ABCD is a parallelogram, then the equality AB.CD = BC.DA is satisfied only in the case when ABCD is a rhombus. Since the point X is the intersection point of its diagonals, then $\angle BXA + \angle DXC = 90^\circ + 90^\circ = 180^\circ$. Let now ABCD is such, that two of its sides at least are not parallel to each other. For definiteness let $AB \cap CD = V$. Since (according to lemma 5) the point X belongs to the circles k(BCK) and k(DAK), then $\angle DXA + \angle BXC = \angle AKD + \angle BKC$. From the conclusion we obtain, that $\angle DXA + \angle BXC = 180^\circ$. But $(\angle BXA + \angle DXC) + (\angle DXA + \angle BXC) = 360^\circ$. Therefore $\angle BXA + \angle DXC = 180^\circ$. If we consider the point X as a common point of the circles k(BCK') and k(DAK'), we deduce the desired equality as a consequence of lemma 5 and the conclusion in the following way:

$$\angle BXA + \angle DXC = \angle BK'A + \angle CK'D = 180^{\circ}$$
.

REFERENCES/ЛИТЕРАТУРА

Stanilov, G. (1979). *Analytic geometry*. Sofia: Nauka i Izkustvo. [Станилов, Г. (1979). *Аналитична геометрия*. София: Наука и изкуство.]

- Grozdev, S. & V. Nenkov (2012). Around the orthocenter in the plane and the space. Sofia: Archimedes 2000. [Гроздев, С. & В. Ненков. (2012). Около ортоцентъра в равнината и пространството. София: Архимед.]
- Grozdev, S. & V. Nenkov (2012). Three notable points on the medians of the triangle. Sofia: Archimedes 2000. [Гроздев, С. & В. Ненков. (2012). Три забележителни точки върху медианите на триъгълника. София: Архимед 2000.]
- Grozdev, S. (2007). For High Achievements in Mathematics. The BulgarianExperience (Theory and Practice). Sofia: ADE. (ISBN 978-954-92139-1-1)
- Malcheski, R., S. Grozdev & K. Anevska (2015). *Geometry of complex numbers*, Sofia: Arhimedes 2000. (ISBN 978-954-779-1886)

ЗАДАЧА 6. ОТ ІМО'2018

Резюме. Международната олимпиада по математика е едно от уважаваните събития и едно от най-старите международни образователни и научни състезания. Тя е най-голямата, най-старата и най-престижната научна олимпиада за гимназиални ученици. 59-ото издание на събитието се проведе в Клуж-Напока, Румъния, в периода 3 – 14 юли 2018. Настоящата статия е посветена на шестата задача от темата. Предложен е подробен анализ на задачата с методологически характер, който ще бъде полезен за ученици и учители по време на подготовката за бъдещи участия в математически състезания.

☑ Prof. Sava Grozdev, DSc. University of Finance, Business and Entrepreneurship 1, Gusla St. 1618 Sofia, Bulgaria E-mail: sava.grozdev@gmail.com

Dr. Veselin Nenkov, Assoc. Prof.

"Nikola Vaptsarov" Naval Academy 73, Vasil Drumev St. Varna, Bulgaria E-mail: vnenkov@mail.bg