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Abstract. We present a system for technical diagnostics (TD) that can recognize 
the actual state of marine equipment. A Bayesian classifier is trained to identify 
the different classes of a piece of equipment, monitored through multiple pseudo-
discrete features. Data learning samples can be acquired with direct experiments 
for each class. The system is capable of merging subjective expert knowledge and 
data learning samples using pseudo-Bayesian estimates when the parameters of 
the conditional likelihood for the classes are identified. In the training process, ε  
correction is applied to solve numerical problems arising from zero probabilities. 
The pseudo-discrete features have hybrid nature and unite probabilistic and fuzzy 
approaches. They combine the ease of extracting subjective expert knowledge 
typical for discrete features with the high precision of using the measured data 
during recognition typical for continuous features. The domain of each pseudo-
discrete feature is divided into several main categories of non-overlapping 
intervals, which are described as words by the expert. If a measured feature falls 
between two consecutive categories it is treated as a linear combination of those 
categories. The resubstitution performance of the classifier is assessed using an 
error matrix. A numerical example of a marine diesel generator demonstrates the 
proposed algorithm in a classification problem with nine different state classes 
of the generator, monitored through 23 pseudo-discrete features. Data learning 
samples are acquired with direct experiments for each class. The created TD system 
has potential applications in other complex engineering systems and may support 
improvements in marine engineering education and training.

Keywords: Fuzzy-probabilistic merging, pseudo-Bayesian parameter estimation, 
learning information, pattern recognition

1. Introduction
The technical diagnostics (TD) process has been a topic rising in popularity, as 

industry continues to seek ways to lower expenditures on maintenance and minimize 
system downtime losses. With the aid of reliability engineering, the process of recognizing 
the working status of any machine or complex system into classes (Koc et al., 2012) 
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has been simplified immensely. However, with a complex system or complex piece of 
machinery, the diagnostic process remains tedious for maintenance personnel. More and 
more unexperienced personnel, or staff unfamiliar with the operations of such systems get 
in charge of maintenance/monitoring. Without good knowledge of the proper workings 
of such systems, diagnosis of potential faults becomes problematic, since they often face 
large amount of monitored data without knowing the meaning of it.

In this paper, we introduce a TD system using a multi-class classifier, based on 
pseudo-discrete features (Nikolova et al., 2019). We shall demonstrate the application 
of the system to recognize the actual state of a hypothetical marine diesel generator 
in a numerical example. We shall train a Bayesian classifier to identify nine different 
state classes of the equipment, monitored through 23 pseudo-discrete features. For the 
learning process, we shall combine subjective expert knowledge and data learning 
samples using pseudo-Bayesian estimates (Skaggs, Stevenson, 1989) when the 
parameters of the conditional likelihood for the classes are identified. We shall apply 
epsilon correction in the training process to solve numerical problems arising from zero 
probabilities.

In what follows, section 2 presents the structure of the technical diagnostics system, 
the structure of the information we shall utilize to train the classifier and the epsilon 
corrections we shall apply. The application of the Bayesian classifier to a numerical 
example for the hypothetical MTU 8V396 marine diesel generator is presented in 
section 3. Section 4 concludes the paper. 

2. State identification
2.1. Bayesian Classification
Let us analyze a complex system (or a system component) with c working 

states, aka classes  ( 1,2,..., )k k cω = . To monitor the system’s working state (or 
class), a feature column vector X



 is introduced as a d-dimensional measurement 
of properties containing diagnostic information about the states (e.g. temperature, 
pressure, flowrate, displacement, etc.), where each measured property is a pseudo-
discrete feature, represented with the real number ix , 1,2,...,i d=

( )1 2, , , T
dX x x x=





We assume that the d-pseudo-discrete features are independent. If the 
measurements of the system in a given moment of time are organized in X



, then 
for each class ( ) 1,2,...,k k cω =  we seek to identify the posterior probability, 
( )| ,kP Xω



 of the system to be in a that class. The necessity to use the Bayesian 
theorem for updating anyone’s degree of belief based on new information (which 
is contained in the values of the specific measurement X



) is proven using rational 
behavioristic assumptions (French, 1993). So, the posterior probabilities will be 
identified using the Bayesian theorem (Ebeling, 2010):
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( ) ( ) ( )
( )

k k
k

P P X |
P | X

P X

ω ω
ω =







      (2)

The initial probabilities of each class ( ) ( ), 1, 2,...,kP k cω =  are known as 
priors and can be identified by historic reliability data. The priors are positive real 
numbers that sum to one. The quantiles ( )| kP X ω



 are the conditional likelihoods 
of observing the specific measured feature vector X

  given that the state of the 
system is .kω  For any feature vector and for any state the conditional likelihoods 
should be non-negative real values with at least one positive value:

( )2

1
| 0

c

k
k

P X ω
=

>∑


 (3)

The quantity ( )P X


 is the unconditional likelihood of observing the specific 
measured X



 calculated as the total probability formula (Selvanathan et al., 2020):

( ) ( ) ( )
1

|
c

k k
k

P X P P Xω ω
=

=∑
 

    (4)

The unconditional likelihood will always be positive, ensuring that the posterior 
probabilities will be non-negative and will sum to one for any observed X



. 
Due to the independence of the pseudo-discrete features, the conditional 

likelihoods for 1,2,3,...,k c=  can be expressed as:

( ) ( )
1

| |
d

k i k
i

P X P xω ω
=

=∏


 (5)

We will call a Bayesian classifier every mathematical tool which accepts 
as input the measured feature vector X



 and produces as output the posterior 
probabilities, ( )| ,  for 1,2, , .kP X k cω =



  Sometimes other classification methods 
are used for maintenance of technical systems (e.g. maximum profit, minimum risk, 
maximum conditional likelihood, etc. (see (Duda et al., 2001; Fukunaga, 1990)). 
The Bayesian classifier has several advantages. First, it extracts all the diagnostic 
information in X



 and combines it with historic reliability data about the states of 
the system. Second, its result can be fed into expected utility maximisation systems 
for selecting the best maintenance actions (Nikolova et al., 2019).

2.2. Pseudo-discrete Features
We will discuss the advantages of the pseudo-discrete features in comparison 

with the continuous and with the discrete features. Take an air compressor as an 
example. For simplicity, we can define three possible classes for the compressor: 
normal operation, air leak, and overheating ( 1ω , 2ω and 3ω ). To monitor these 
classes, we measure four pseudo-discrete features: air pressure, air flowrate, oil 
pressure and oil temperature, i.e., ( )1 2 3 4, , , TX x x x x=



.
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Measurements from each pseudo-discrete feature are recorded for analysis. An 
operator may have to make a judgement based on the information presented in 
Table 1.

Table 1. Numerical Data Presentation
Air Pressure       x1 200 kPa
Air Flowrate       x2 1.5 kg/s
Oil Pressure       x3 50 kPa
Oil Temperature x4 40 degrees Celsius

By looking at the numbers presented in Table 1, it is exceedingly difficult for 
anyone to decide upon the class that the compressor is working in. However, the 
decision making would be much easier if the person is presented with system 
information as in Table 2. It presents a much clearer picture of the system’s working 
status. Even a person not familiar with the compressor’s normal working condition 
could tell that the compressor is likely overheating.

Table 2. Pseudo-Discrete Presentation
Air Pressure       x1 Normal
Air Flowrate       x2 Normal
Oil Pressure       x3 High 
Oil Temperature x4 Critical

Therefore, we aim to build a technical diagnostic system, using simple pseudo-
discrete features that are easy to understand, thus substantially simplify the process 
of extracting expert knowledge. At the same time, the measurement vectors will 
contain continuous information as in Table 1, which facilitates the precision of 
extracting the knowledge in the learning data samples and the recognition of 
specific measurement vectors. So, the pseudo-discrete features act as discrete ones 
in the process of expert information extraction, but behave like continuous features 
when dealing with the specific measurements. Each pseudo-discrete feature ix  is 
categorized into hi typical pseudo-discretes Tj,i, for j=1,2,…,hi. The latter allows 
us to characterize any specific measurement of xi in categories such as “too high”, 
“high”, “normal”, “low” and “too low”. Let the jth typical pseudo-discrete of the 
ith pseudo-discrete feature is described as a fuzzy set with degree of membership 

( ),j i ixµ . As any degree of membership function, the values of ( ),j i ixµ  are non-
negative with maximum value of 1 which is achieved at least once:

( ) [ ], 0,1 ,  j i i ix x Rµ ∈ ∀ ∈  (6)
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( ), 1,  j i i ix x Rµ = ∃ ∈   (7)

We would like the pseudo-discretes to form a fuzzy partition of the real line, so 
we restrict the degree of membership to have forms that sum to one for any real xi 
value:

   ( ),
1

1,  
ih

j i i i
j

x x Rµ
=

= ∀ ∈∑   (8)

In the ideal case, the count hi of the pseudo-discretes, their names Tj,i, and the 
degree of membership function ( ),j i ixµ  should be designed by experts in the field 
of technical diagnostics. All formulae in this paper will utilize the generic form of 
the fuzzy degree of membership function, which satisfies only conditions (6), (7) 
and (8). However, the developed software and the examples will utilize trapezoidal 
fuzzy degree of membership functions, as in Figure 1. 

Let Dj,i and Uj,i, for j=1,2,…,c are numbers from the extended real line, which 
satisfy: 

 
 

, ,

, 1,

,  for 1,2,...,
,  for 1,2,...,

j i j i i

j i j i i

D U j h
U D j h+

< =

< =
  

(9)

Then, for j=2,3,…,hi-1, the degrees of membership are:
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For j=1, the degree of membership is:

( )

1,

2,
1, 1, 2,

2, 1,

2,

1,

, <

0,

i i

i i
i i i i i

i i

i i
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−= <
−

 ≤

For j=hi, the degree of membership is:

( )
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,
, 1, ,

, 1,
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, <
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i
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In this setup, the values of 1,iD  and ,ih iU  are irrelevant. 
Using the same air compressor example, the pseudo-discrete feature x4 

(oil temperature in oC) is divided into h4=4 typical discretes: T1,4=”low”, 
T2,4=”normal”, T3,4=”high” and T4,4=”critical”, with corresponding temperature 
ranges assigned as shown in Table 3. The corresponding fuzzy degrees of 
membership are given in Figure 1.

Table 3. Division of pseudo-discretes  
for pseudo-discrete feature Oil Temperature

Low Below 30 oC

Normal 40-60 oC

High 70-90 oC

Critical Above 100 oC

Let ,
k
j iq  be the probability that pseudo-discrete feature xi is Tj,i provided that 

X


 belongs to class kω  (see (Tenekedjiev et al., 2006) for details). For example, the 
conditional probability of the air compressor being in third class (overheating), with 
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the fourth pseudo-discrete feature (oil temperature) being in the second pseudo-
discrete 2h  (normal), is represented as:

( ) 3
4 2,4 3 2,4' ' | 0.2P x T normal qω= = = =

The uncertainty in xi can be described by c conditional probability mass 
functions PMFi,k (for k=1,2,…,c) as follows:

( ) ( ) ( ){ }
,

1, 1, 2, 2, , ,, , , , , ,
i i

i k

k k k
i i i i h i h i

PMF

T q T q T q= 

  
(10)

As in every PMF, the probabilities should be non-negative and sum to 1:

 ,
1

1;  1,2, , ; 1,2, ,
ih

k
j i

j
q i d k c

=

= = =∑  

  
(11)

Then, the quantity ( )i kP x |ω  in (5) can be calculated as weighted average of the 
pseudo-discrete probabilities k

j ,iq  with weights - the fuzzy degrees of membership:

  ( ) ( )
1

jh
k

i k j ,i i j ,i
j

P x | x qω µ
=

= ∑
  

(12)

2.3.1. Expert knowledge extraction
Assume that for class kω  we do not have any data and should rely entirely on 

expert information. The expert knowledge extraction for the pseudo-discrete feature 
xi is much easier to do in comparison with the case when the feature is continuous. 
The expert workload is the same as if xi is a discrete feature. For each class kω  
and for each feature xi the export has to assess the values of the PMFi,k that are 

( ) ( ) ( )( )1 2 i

k e k e k e
,i ,i h ,iq ,q ,...,q  provided that there are only typical cases. The extracted values 

should be non-negative and satisfy (12). We can then build an expert knowledge 
e

i ,kPMF  for the thi  pseudo-discrete feature if it belongs to class kω . Using (10) and 
(13), the e

i ,kPMF  can be written in short form:
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( ) ( ) ( )( )1 2 i

k e k e k ee
i ,k ,i ,i h ,iPMF q ,q ,...,q=   (14)

A confidence factor ( )k e
iL  is applied to the expert estimate of e

i ,kPMF . The factor 
is positive with maximal value of one and reflects the expert’s confidence when 
assigning probabilities to each pseudo-discrete within a given class. Applying the 
confidence factor to (14) gives the expert knowledge data base for class kω :

{ }1 2k( e )e
k i ,k iE PMF L | i , , ,d= − =   (15)

Figure 1. Fuzzy membership Function for Pseudo-discrete feature  
oil temperature with four pseudo-discretes

2.3.2. Extraction from learning sample
Assume that for class kω we only have a learning sample containing nk examples 

of the feature vector X


:

( ){ }1 2k k k
l l kX ,L | l , , ,nχ = =




 (16)

Each measured vector k
lX


 in kχ  is accompanied by a representation factor k
lL . 

The factor is positive with maximal value of one and represents how well k
lX


 truly 
represents the class kω  i.e. the corresponding faults or class of a machine (Hald, 
2007). The vector 

k
lX


 has the following coordinate notations:

( )1 2
Tk k k k

l l , l , l ,dX x ,x , ,x=




 (17)

In the air compressor case, 3
25X


 will be:

 ( ) ( )3 3 3 3 3
25 25 1 25 2 25 3 25 4 1011 5 200 88

T T
, , , , , .X x ,x , ,x ,x ,= =
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It represents readings from all four pseudo-discrete feature of the 25th observation, 
when the compressor is overheating (the air pressure reads 101 kPa, the air flow rate 
reads 1.5 kg/s, the oil pressure reads 200 kPa, and the oil temperature reads 88 Co).

The parameter ( )k x
j ,iq  from (13) can be calculated using the frequentist definition 

of probabilities (Tenekedjiev et al., 2002):

( ) ( )
1 1

k kn nk x k k k
l j ,i l ,i lj ,i

l l
q L x / Lµ

= =
= ∑ ∑

 
(18)

2.3.3. Pseudo-Bayesian merging
Assume that for class kω , we have both a learning sample kχ (16) and an expert 

knowledge data base Ek (15). When merging the learning sample estimate ( )k x
j ,iq  

and the expert estimate ( )k e
j ,iq  into an estimate k

j ,iq , a pseudo-Bayesian approach can 
be applied as a weighted mean:

( ) ( ) ( )

( )
1

1

20

20

k

k

nk e k e k xk
li j ,i j ,i

lk
j ,i nk e k

li
l

L q L q
q

L L

=

=

+
=

+

∑

∑
  

(19)

The coefficient 20 in (19) reflects the notion that the expert estimates (when 
( ) 1k e

iL = ) should contain the 5% engineering error. The same 5% accuracy can be 
obtained from 20 observations with k

lL =1.

2.4. Numerical problems
There is a potential numerical problem with the conditional likelihood term 
( )kP X |ω


 in (2). Due to (5), this term is often a small value, and when it is smaller 
than the machine epsilon ε , it is treated as 0 in any machine language. To solve the 
stated numerical problem, ( )kP | Xω



 is split into two terms by taking its logarithm:

( ) ( ) ( )ln |k kP X A X B Xω = +
  

 
(20)

The ( )B X


 part does not depend on the class k, whereas the part ( )kA X


 is 
different for each class. Using (2), (5) and (12) we obtain the following:
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ln ln
j

d

k i k k
i

hd
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j i i j i k
i j

A X P x P

x q P

ω ω

µ ω
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=   +     

= +   

∑

∑ ∑



      

(21)

( )kA X


 is called the discriminant function for class k. That name originates 
from the fact that we can easily identify the class with the greatest posterior 
probability as the class with the greatest discriminant function (i.e., we can classify 
the observation x  using the maximum posterior probability method based only on 
the discriminant functions):

kx ω∈  if ( ) ( )k iA X A X≥
 

, i∀   (22)

Discriminant functions allow to avoid this numerical problem. Although we 
will never calculate ( )B X



, it is trivial to derive an expression for the posterior 
probabilities depending only on the discriminant functions:

( ) ( ) ( )
1

| 1 / j k
c

A X A X
k

j
P X eω −

=

= ∑
 



 
 (23)

However, using discriminant functions requires no conditional probability to 
be zero ( ), 0 .k

j iq =  In this case, the 0 probability is substituted with the machine 
epsilon ε , while the probabilities from other pseudo-discretes are multiplied by 
1 ε− , so the sum of probabilities from the pseudo-discretes in the same observation 
is 1 according to (11).

Using the compressor example again, in an observation from the 3rd class 
“Overheating” (k=3), the 4th pseudo-discrete feature “Oil Temperature” (i=4) has 
h4=4 pseudo-discretes (low, normal, high, critical). Imagine that ( )3

4,4 0 .q =  In this 
case, epsilon correction is performed as shown in Table 4.

Table 4. Epsilon Correction for 4
,4jq

Pseudo-Disrete Original Observation Epsilon-Corrected
Observation

4
1,4q 0.2 0.2(1 )ε−
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4
2,4q 0.3 0.3(1 )ε−

4
3,4q 0.5 0.5(1 )ε−

4
4,4q 0 ε

Sum 1 1

More practical results may be obtained if we substitute ε with the smallest 
non-negative ,

k
j iq  divided by 1000.

3. Application on Marine Diesel Generator
With the established theoretical and mathematical background, we apply the 

Bayesian classifier within a numerical example of a hypothetical MTU 8V396 marine 
diesel generator. The data for our numerical example is obtained from an expert. A 
total of 9 classes are established, monitored through 23 pseudo-discrete features, i.e., 
c=9, and d=23. The classes and features are listed in Table 5 and Table 6.

Table 5. List of Classes for the Marine Diesel Generator Example

ω1 Metal Fatigue

ω2 Lost of DC Voltage

ω3 Insufficient Output Frequency

ω4 Single Phase Voltage Drop

ω5 Misalignment
ω6 Faulty Knock in Bore

ω7 Incorrect Air/Fuel Ratio

ω8 Cooler Overheating
ω9 Normal Operation

After consulting with an expert, the pseudo-discrete features are classified into 3 
to 5 different pseudo-discretes, with ranges ,j jD U    given to each pseudo-discrete, 
and expert knowledge ( )

,
k e
j iq  given to every pseudo-discrete of every pseudo-discrete 

feature under every class.
A learning sample, containing 10 observations in each class are given to the 

Bayesian classifier for learning and recognition. The confidence factor applied to 
the expert knowledge is set at 100% for this analysis. 
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To demonstrate the parameter estimation methods and to test the performance of 
the classifier the expert also provided 10 pseudo observations to each class. Some 
of the observations are purposely put out of ,j jD U    for some pseudo-discrete 
features to see if the classifier would recognize them as being in a different class.

Table 6. List of Pseudo-Discrete Features  
for the Marine Diesel Generator Example

x1 DC Voltage (V)

x2 Oil Pressure (psi)

x3 Oil Flowrate (L/min)

x4 Oil Temperature (K)

x5 Water Temperature (K)

x6 Water Flowrate (L/min)
x7 Boost Pressure (bar)
x8 Boost Temperature 1 (K)

x9 Boost Temperature 2 (K)

x10 Speed (rpm)
x11 Drive-end tri-axel Accelerometer x (mm/s)

x12 Drive-end tri-axel Accelerometer y (mm/s)
x13 Drive-end tri-axel Accelerometer z (mm/s)

x14 Non-drive-end tri-axel Accelerometer x (mm/s)

x15 Non-drive-end tri-axel Accelerometer y (mm/s)

x16 Non-drive-end tri-axel Accelerometer z (mm/s)

x17 Output Frequency (Hz)

x18 Bank A Knock Censor (mm/s)

x19 Bank B Knock Censor (mm/s)

x20 U Single-Phase AC Voltage (V)

x21 V Single-Phase AC Voltage (V)
x22 W Single-Phase AC Voltage (V)
x23 Fule Flowrate (L/hr)

After recognition, the Bayesian classifier produces a confusion matrix that can 
be summarized as:
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ω1: 8 observations recognized correctly;
       2 observations recognized in class9;
ω2: 8 observations recognized correctly;
       1 observation recognized in class 8;
       1 observation recognized in class 9;
ω3: 5 observations recognized correctly;
       3 observations recognized in class 4;
       2 observations recognized in class 9;
ω4: All observations recognized correctly;
ω5: 9 observations recognized correctly;
       1 observation recognized in class 9;
ω6: 8 observations recognized correctly;
       1 observation recognized in class 5;
       1 observation recognized in class 9;
ω7: 9 observations recognized correctly;
       1 observation recognized in class 9;
ω8: All observations recognized correctly;
ω9: 9 observations recognized correctly;
       1 observation recognized in class 8.

4.Conclusion
The process of applying pseudo-discrete features to complex systems could 

drastically simplify the technical diagnosis process. Our Bayesian classifier was able 
to recognize the state of the hypothetical generator with few errors on the majority 
of the 90 pseudo observations provided by the expert. Given sufficient and accurate/
confident expert knowledge, the classifier is able to accurately recognize the pattern 
within the measured pseudo-discrete features.

The use of pseudo-discrete features improves the quality of education in marine 
engineering, where students need pattern classification in technical diagnostics of 
marine equipment. These features are easy to use and comprehend. The pattern 
classification process is more transparent in that way because students can track 
the diagnostics decisions to their knowledge on how the marine equipment 
operates.

Future tests of the system should include actual recorded data from running the 
generator under different conditions, and some expert datasets should be made 
unavailable. The classifier would have to perform under two additional scenarios: 
only learning sample data available with no expert knowledge; only expert knowledge 
available with no learning sample. The created classification approach with pseudo-
discrete features has potential application in other complex engineering systems and in 
medical diagnostics.
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