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Abstract. We present a system for technical diagnostics (TD) that can recognize 
the actual state of marine equipment. A Bayesian classifier is trained to identify 
the different classes of a piece of equipment, monitored through multiple pseudo-
discrete features. Data learning samples can be acquired with direct experiments 
for each class. The system is capable of merging subjective expert knowledge 
and data learning samples using pseudo-Bayesian estimates when the parameters 
of the conditional likelihood for the classes are identified. In the training process, 
correction is applied to solve numerical problems arising from zero probabilities. 
The pseudo-discrete features have hybrid nature and combine probabilistic and 
fuzzy approaches. They combine the ease of extracting subjective expert knowledge 
typical for the discrete features with the high precision of using the measured 
data during recognition typical for the continuous features. The domain of each 
pseudo discrete feature is divided into several main categories of non-overlapping 
intervals which are described as words by the expert. If a measured feature falls 
between two consecutive categories it is treated as a linear combination of those 
categories. The resubstitution performance of the classifier is assessed using an 
error matrix. A numerical example of a marine diesel generator demonstrates the 
proposed algorithm in a classification problem with nine different state classes 
of the generator, monitored through 23 pseudo-discrete features. Data learning 
samples are acquired with direct experiments for each class. The created TD system 
has potential applications in other complex engineering systems and may support 
improvements in marine engineering education and training.

Keywords: fuzzy-probabilistic merging; pseudo-bayesian parameter estimation; 
learning information, pattern recognition

Introduction
The technical diagnostics (TD) process has been a topic rising in popularity, as 

industry continues to seek ways to lower spendings on maintenance and minimize system 
downtime losses. With the aid of reliability engineering, the process of recognizing the 
working status of any machine or complex system into classes (Koc et al. 2012) has 

Marine Engineering Educationhttps://doi.org/10.53656/ped21-6s.20tec



225

Technical Diagnostics of Marine Equipment With...

been simplified immensely. However, with a complex system or complex piece of 
machinery, the diagnostic process remains tedious for maintenance personnel. More 
and more unexperienced personnel, or staff unfamiliar with the workings/operations 
of such systems become in charge of maintenance and monitoring. Without a good 
knowledge of the proper workings of such systems, diagnosis of potential faults 
becomes problematic, since they often face large amount of monitored data without 
knowing the meaning behind it, or what it indicates.

In this paper, we introduce a TD system using a multi-class classifier, based on 
pseudo-discrete features (see (Duda et al. 2001) and (Nikolova et al. 2019) for further 
discussion on pseudo-discrete features). We shall demonstrate the application of the 
system to recognize the actual state of a hypothetical marine diesel generator in a 
numerical example. We shall train a Bayesian classifier to identify nine different state 
classes of the equipment, monitored through 23 pseudo-discrete features. For the 
learning process, we shall combine subjective expert knowledge and data learning 
samples using pseudo-Bayesian estimates (Skaggs et al. 1989) when the parameters of 
the conditional likelihood for the classes are identified. We shall apply epsilon correction 
in the training process to solve numerical problems arising from zero probabilities. 

In what follows, we first present the structure of the technical diagnostics 
system, as well as the structure of the information we shall utilize for the training 
of the classifier and the epsilon corrections we shall apply. Then we present the 
application of the Bayesian classifier to a numerical example for the hypothetical 
MTU 8V396 marine diesel generator. The last section concludes the paper.

System Description 
Let us analyse a complex system or a system component with several working 

statuses, categorized into classes. To monitor the system’s working status (or 
class), a vector X



 is introduced as a d-dimensional measurement of properties 
(e.g. temperature, pressure, flowrate, displacement, etc.), where each measured 
property is a pseudo-discrete feature, represented with ix , 1 2 3i , , ...d= , as follows: 

( )1 2
T

dX x ,x , ,x=




Therefore, at a given measured property of the component, the posterior 
probability of the component being in a given class/status can be written with the 
aid of Bayesian theorem (Ebeling 2010):

( ) ( ) ( )
( )

k k
k

P P X |
P | X

P X

ω ω
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
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The probabilities of each class ( )kP ω  are known as priors, ( )kP X |ω


 are the 
conditional likelihoods, and ( )P X



is the unconditional likelihood. The working 
status of the machine/system could be assessed by collecting data from various 
pseudo-discrete features ix . The assessment process would be simple provided that 
a sufficient, if not abundant, amount of data is available. In practice, however, not 
every personnel running such complex machineries could make a judgement on the 
working status based on recorded data.

Take an air compressor as an example. For simplicity, we can define three 
possible classes for the compressor: normal operation, air leak, and overheating.  
( 1ω , 2ω and 3ω ) To monitor these classes, we measure four pseudo-discrete features: 
air pressure, air flowrate, oil pressure and oil flowrate, i.e. ( )1 2 3 4

TX x ,x ,x ,x=


. 
Measurements from each pseudo-discrete feature are recorded. An operator 

may have to make a judgement based on the information presented in Table 1. By 
looking at the numbers presented in Table 1, it is exceedingly difficult for anyone 
to decide as of which class the compressor is working under. However, the decision 
making would be much easier if the person is presented with system information 
as in Table 2.

Table 1. Numerical Data Presentation
Air Pressure       x1 200 kPa
Air Flowrate       x2 1.5 kg/s
Oil Pressure       x3 50 kPa
Oil Temperature x4 40 degrees Celsius

By looking at the numbers presented in Table 1, it is exceedingly difficult for 
anyone to decide as of which class the compressor is working under. However, 
the decision making would be much easier if the person is presented with system 
information as in Table 2.

Table 2. Pseudo-Discrete Presentation
Air Pressure       x1 Normal
Air Flowrate       x2 Normal
Oil Pressure       x3 High 
Oil Temperature x4 Critical

Table 2 presents a much clearer picture of the system’s working status. Even 
a person not familiar with the compressor’s normal working condition could tell 
that the compressor is likely overheating. Therefore, we aim to build a technical 
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diagnostic system, using simple pseudo-discrete features that are easy to understand, 
with the aid of some expert knowledge and learning sample.

Expert Knowledge
To build a diagnostic system based on Table 2, each pseudo-discrete feature ix  

is categorized further into pseudo-discretes ,j iµ  (meaning the thj  pseudo-discrete 
of the thi pseudo-discrete feature), describing the measurement in “levels” such 
as “too high”, “high”, “normal”, “low” and “too low”. The pseudo-discretes are 
divided using expert knowledge. 

Using the same air compressor example, the pseudo-discrete feature oil 
temperature could be divided into four levels: low, normal, high and critical, with 
corresponding temperature ranges assigned as shown in Table 3 and Figure 1.

Table 3. Division of pseudo-discretes  
for pseudo-discrete feature Oil Temperature

Low Below 30 oC
Normal 40-60 oC
High 70-90 oC
Critical Above 100 oC

The expert knowledge provides the level ranges for each pseudo-discrete feature. 
Such levels are a lot easier to assess than an unexplained/uncategorized data.

Note that the conditional probability of each pseudo-discrete feature can then be 
represented with ih  typical non-overlapping intervals j jD ,U   , which according 
to (Tenekedjiev et al. 2006) are:

( ) ( )k x
i j j k j ,iP x D ,U | qω ∈ =  		  (3)

For example, the conditional probability of the air compressor being in third 
class (overheating), with the fourth pseudo-discrete feature (oil temperature) being 
in the second pseudo-discrete 2h  (normal), is:

[ ]( ) 3
4 3 2 440 60 ,P x C, C | qω∈ ° ° =
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Figure 1. Fuzzy membership Function for Pseudo-discrete feature  
oil temperature with four pseudo-discretes

After consulting with an expert, the term ( )k e
j ,iq  is gained as the reference 

probability of the ith pseudo-discrete feature to be in the jth pseudo-discrete while 
the system is working under class k. We can then build an expert knowledge vector 
for the ith pseudo-discrete feature as:

( ) ( ) ( ) ( )( )1 2 3 i

k e k e k e k ek
i ,i ,i ,i h ,iE q ,q ,q ,...,q=


		  (4)

A confidence factor ( )k e
dL  is applied to the expert knowledge. Such factor is a 

measurement of the expert’s accuracy or confidence when assigning probabilities 
to each pseudo-discrete with a given class. Applying the confidence factor to (4) 
gives the expert knowledge vector:

( ) ( ) ( )( )1 21 2
k e k e k ek k k

k d dE E L ,E L , ,E L= − − −
  

 	 (5)

With each measured property now divided into pseudo-discretes for easier 
recognition, it is necessary to give the machine a learning sample to study and 
recognize the class of a system.

Learning Sample
For each pseudo-discrete feature, nk observations are given to the program for 

learning and recognition. A vector k
lX


 consisting results of all pseudo-discrete 
features from the lth observation in class k, is then given as:

( )1 2 3
k k k k k
l l , l , l , l ,dX X ,X ,X ,X=


 		  (6)

For example, in the air compressor case, the vector 3
25X


 will be: 3
25X


=(101 kPa, 
1.5 kg/s, 200 kPa, 88 oC) and represents readings from all four pseudo-discrete 
feature of the 25th observation, when the compressor is overheating. The air pressure 
reads 101 kPa, air flow rate reads 1.5 kg/s, oil pressure reads 200 kPa, and the oil 
pressure reads 88 Co.
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The term ( )k x
j ,iq  from (3) is calculated using the frequentist definition of 

probability (Tenekedjiev et al. 2002) 

( ) ( )1

1

nk k k
l l j ,i l ,ik x

j ,i nk k
ll

L X
q

L

µ=

=

=
∑

∑
		  (7)

with a goodness-of-fit factor k
lL . The factor shows how well each observation 

truly represents the corresponding faults or class of a machine (Hald 2007).

Pseudo-discretes
There is a potential numerical problem with the conditional likelihood term 
( )kP X |ω


 in (1). This term is often a small value, and when it is smaller than the 
machine epsilon ε , it is treated as 0 in any machine language. To solve the stated 
numerical problem, ( )kP | Xω



 is split into two terms by taking its logarithm:

( ) ( ) ( )k kln P | X A X B Xω = +
  

	 (8)

The ( )B X


 part does not depend from the class k, whereas the part ( )kA X


 
is different for each class. It is called the discriminant function for class k. That 
name originates from the fact that we can easily identify the class with the greatest 
posterior probability as the class with the greatest discriminant function (i.e. we can 
classify the observation x  using the maximum posterior probability method based 
only the discriminant functions): kx ω∈  if ( ) ( )k iA X A X≥

 

 for i=1,2,3,…, c
Using the discriminant functions allows us to avoid any numerical problems. 

Although we will never calculate the part ( )B X


, it is trivial to derive an expression 
for the posterior probabilities depending only on the discriminant functions:

( ) ( ) ( )
1

1
j k

k A X A Xc
j

P | X
e

ω
−

=

=
∑

 



	 (9)

Taking the logarithm of ( )kP | Xω


 in equation (1) we have:

( ) ( ) ( )
( ) ( ) ( ) ( )k k

k k k
P P X |

ln P | X ln ln P ln P X | ln P X
P X

ω ω
ω ω ω

 
 = = + −
 
 



  



	 (10)

Independent of the class number k, it is then recognized that the term ( )ln P X−

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is to be the term ( )B X


, and the two terms ( ) ( )k kln P ln P X |ω ω+


 are to be the 
term ( )A X



 in (8).
Assuming the measured pseudo-discrete features ix  are all independent from 

each other, then:

( ) ( ) ( ) ( ) ( ) ( )1 2 3
1

d
k i k k k k d k

i
P X | P x | P x | P x | P x | P x |ω ω ω ω ω ω

=
= =∏



 	 (11)

The term ( )i kP x |ω  is of interest. If the measured feature iX  is assumed to be 
a pseudo-discrete feature with ih  pseudo-discretes, then it is possible to represent 
the theoretical justification of the fuzzy measurements, which leads us back to 
the setup of pseudo-discrete features and the introduction of expert knowledge 
section.

Pseudo-Bayesian Estimation
Combining the learning sample ( )k e

j ,iq , and the expert knowledge ( )k e
j ,iq , the final 

probability k
j ,iq  can then be estimated using the frequentist definition of probability 

with Pseudo-Bayesian Estimation, developed from (7):

( ) ( ) ( )

( )
1

1

50

50

k x k e k enk k
l j ,i i j ,ilk

j ,i k enk k
l il

L q L q
q

L L
=

=

+
=

+

∑
∑

		  (12)

The expert knowledge terms in (12) are applied with an accuracy factor that is 
subject to change. Here, 50 represents 1/50=2% accuracy factor (Skaggs 1989).

Epsilon Correction
It is possible that a certain observation would contain no data in certain pseudo-

discretes, a.k.a. 0k
j ,iq = . In this case, the zero probability is substituted with the 

machine epsilon ε , while the probabilities from other pseudo-discretes are 
multiplied by 1 ε− , so that the sum of probabilities form pseudo-discretes in the 
same observation still equal to one. 

Using the compressor example again, in an observation from the 4th class 
“Overheating” (k=4), the 4th pseudo-discrete feature “Oil Temperature” (i=4) has 4 
pseudo-discretes (low, normal, high, critical j=4). However, no data falls under the 
“critical” level. In this case, epsilon correction is performed as shown in Table 4.
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Table 4. Epsilon Correction for 4
,4jq

Pseudo-Disrete Original Observation Epsilon-Corrected
Observation

4
1,4q 0.2 0.2(1 )ε−

4
2,4q 0.3 0.3(1 )ε−

4
3,4q 0.5 0.5(1 )ε−

4
4,4q 0 ε

Sum 1 1

Application on Marine Diesel Generator
With the established theoretical background, we apply the Bayesian classifier 

within a numerical example of a hypothetical MTU 8V396 marine diesel generator. 
The data for our numerical example is obtained from an expert. A total of 9 classes 
are established, monitored through 23 pseudo-discrete features, i.e., k=9, and i=23. 
The classes and features are listed in Table 5 and Table 6. 

Table 5. List of Classes for the Marine Diesel Generator Example
ω1 Metal Fatigue
ω2 Lost of DC Voltage
ω3 Insufficient Output Frequency
ω4 Single Phase Voltage Drop
ω5 Misalignment
ω6 Faulty Knock in Bore
ω7 Incorrect Air/Fuel Ratio
ω8 Cooler Overheating
ω9 Normal Operation

After consulting with an expert, the pseudo-discrete features are classified into 3 
to 5 different pseudo-discretes, with ranges j jD ,U   given to each pseudo-discrete, 
and expert knowledge ( )k e

j ,iq  given to every pseudo-discrete of every pseudo-
discrete feature under every class. A learning sample, containing 10 observations 
in each class are given to the Bayesian classifier for learning and recognition. The 
confidence factor applied to the expert knowledge is set at 100% for this analysis. 

To demonstrate the parameter estimation methods and to test the performance of 
the classified the expert also provided 10 pseudo-observations to each class. Some 
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of the observations are purposely put out of j jD ,U    for some pseudo-discrete 
features to see if the classifier would recognize them as being in a different class.

After recognition, the Bayesian classifier produces an error matrix that can be 
summarized as follows:

ω1: 8 observations recognized correctly;
      2 observations recognized in class 9;
ω2: 8 observations recognized correctly;
      1 observation recognized in class 8;
      1 observation recognized in class 9;
ω3: 5 observations recognized correctly;
      3 observations recognized in class 4;
      2 observations recognized in class 9;
ω4: All observations recognized correctly;
ω5: 9 observations recognized correcly;
      1 observation recognized in class 9;
ω6: 8 observations recognized correctly;
      1 observation recognized in class 5;
      1 observation recognized in class 9;
ω7: 9 observations recognized correctly;
      1 observation recognized in class 9;
ω8: All observations recognized correctly;
ω9: 9 observations recognized correctly;
      1 observation recognized in class 8.

Table 6. List of Pseudo-Discrete Features  
for the Marine Diesel Generator Example

x1 DC Voltage (V)
x2 Oil Pressure (psi)
x3 Oil Flowrate (L/min)
x4 Oil Temperature (K)
x5 Water Temperature (K)
x6 Water Flowrate (L/min)
x7 Boost Pressure (bar)
x8 Boost Temperature 1 (K)
x9 Boost Temperature 2 (K)
x10 Speed (rpm)
x11 Drive-end tri-axel Accelerometer x (mm/s)
x12 Drive-end tri-axel Accelerometer y (mm/s)
x13 Drive-end tri-axel Accelerometer z (mm/s)
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x14 Non-drive-end tri-axel Accelerometer x (mm/s)
x15 Non-drive-end tri-axel Accelerometer y (mm/s)
x16 Non-drive-end tri-axel Accelerometer z (mm/s)
x17 Output Frequency (Hz)
x18 Bank A Knock Censor (mm/s)
x19 Bank B Knock Censor (mm/s)
x20 U Single-Phase AC Voltage (V)
x21 V Single-Phase AC Voltage (V)
x22 W Single-Phase AC Voltage (V)
x23 Fule Flowrate (L/hr)

Conclusion
The process of applying pseudo-discrete features to complex systems could 

drastically simplify the technical diagnostics process. Our Bayesian classifier was 
able to recognize the state of the hypothetical generator with few errors on the 
120 pseudo-observations provided by the expert. If the given machine is working 
under a certain class, with sufficient and accurate/confident expert knowledge, the 
classifier is able to accurately recognized the pattern within the measured pseudo-
discrete features.

The use of pseudo-discrete features improves the quality of education in marine 
engineering, where students need pattern classification in technical diagnostics of 
marine equipment. These features are easy to use and comprehend. The pattern 
classification process is more transparent in that way because students can track 
the diagnostics decisions to their knowledge on how the marine equipment 
operates.

Future tests of the system should include actual recorded data from running the 
generator under different conditions, and a few expert knowledge should be made 
unavailable. The classifier would have to learn from two different scenarios: only 
learning sample data available with no expert knowledge; only expert knowledge 
available with no learning sample. In these cases, there is the ability to recognized 
a pattern by combining known and unknown information and then predict the 
working class of generator/system using test run data.
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