
22

Pedagogika-Pedagogy	 Volume 93, Number 7s, 2021	 Педагогика

S-101 CHARTS, DATABASE TABLES
FOR S-101 CHARTS, AUTONOMOUS VESSEL

Vladimir Brozović, Danko Kezić, Rino Bošnjak, Filip Bojić
University of Split (Croatia)

Abstract. This article shows a way to store the data of many S-101 charts into
a single Postgres database. The data model of the database with all tables is shown
and explained. The concatenation of the indices from the different database tables is
explained. This concatenation allows for a faster search of points/curves with certain
properties. This fulfills one of the basic requirements for the purpose of navigating
an autonomous vessel – that several charts can be interpreted simultaneously by a
machine. Mechanisms for up-dating the database with new charts not yet present
in the database are shown. Also the mechanisms for updating the charts already
present in the database are explained. System limitations are briefly presented to
show that in practical use there are in fact none. Memory requirements for such a
type of chart storage in the database is compared with memory requirements for
ISO8211 files normally used for storage of S-101 charts. With small examples it is
finally shown how the stored chart information can be searched specifically.

Keywords: S-101 charts; charts database; autonomous vessel

Introduction
For the coming era in nautical science, new strategies for the exchange of

information between different sources and users are defined. These new strategies
are housed in a common set of standards, S-100. The first member of this group,
S-101 nautical charts, is the focus of this article.

The need for a way of storing chart data above this standard, which offers multiple
possibilities of searching within this data according to different criteria arose with
the progress of work on a Collision Avoidance System (CAS), which requires map
data among other parameters in predicting the most likely future ship positions.
In addition to the ship position predictor, within the same system, the function
block for determining new ship commands necessary for collision avoidance also
requires the possibility of a selective search in the charts.

In this article, the authors’ work is presented on how the chart data can be
organized into a database so that this data can be used more efficiently by various
algorithms used in autonomous vehicles.

Education and Maritime Industryhttps://doi.org/10.53656/ped21-7s.02s101

23

S-101 Charts, Database Tables for S-101 Charts...

Section 2 reviews the S-100 standard group and its members. Section 3 briefly
describes the ISO8211 data format used for S-101 files (charts). S-101 records are
also presented in this section. Section 4 describes the chart metadata file, assigned
to a specific chart. Section 5 is a very short presentation of the chosen database
software (postgres) for collecting and storing information and the reasons for its use.
The main features of the GIS extension functions of the database software are also
mentioned here. Section 6 briefly describes the structure of various database tables
used in the database. The links between these tables are explained here. The table
indices, their creation and the linking of several tables via these indices are shown.
Section 7 presents the software for entering information from S-101 charts into the
previously described database. Section 8 discusses the memory requirements for
chart information stored in this way compared to classic ISO8211 files. Section 9
shows with an example how curves with specific attributes (e.g. Coastline) can be
searched simultaneously in several charts containing a given point (e.g. current ship
position).

S-100 group of standards
The whole S-100 standard group is well described in figure 1 on page 3.

Figure 1. S-100 World

24

Vladimir Brozović, Danko Kezić, Rino Bošnjak, Filip Bojić

The list of all standards in the S-100 group is given as follows:
S-101 Electronic Navigational Chart ENC, S-102 Bathymetric Surface,

S-103 Sub-surface Navigation, S-104 Water Level Information for Surface
Navigation, S-111 Surface Currents, S-121 Maritime Limits and Boundaries,
S-122 Marine Protected Areas, S-123 Radio Services, S-124 Navigational
Warnings, S-125 Marine Navigational Services, S-126 Physical Environment,
S-127 Traffic management, S-128 Catalogues of Nautical Products, S-129 Under
Keel Clearance Management (UKCM), S-1xx Marine Services, S-1xx Digital
Mariner Routing Guide, S-1xx Harbour Infrastructure, S-1xx (Social/Political),
S-201 Aids to Navigation Information, S-210 Inter-VTS Exchange Format, S-211
Port Call Message Format, S-230 Application Specific Messages, S-240 DGNSS
Station Almanac, S-245 eLoran ASF Data, S-246 eLoran Station Almanac, S-247
Differential eLoran Reference Station Almanac, S-401 IEHG Inland ENC, S-402
IEHG Bathymetric Inland ENC, S-411 JCOMM Ice Information, S-412 Weather
Overlay (JCOMM), S-413 Weather and Wave Conditions, S-414 Weather and
Wave Observations. The numbers of the standards in the S-100 group can be
found in1.

ISO 8211 files used for S-101 charts
The S-101 standard, used for electronic charts, needs a common data format for

maximum interoperability. The ISO8211 file format is used for data storage. This
format is described in2. Since this standard is subject to a charge, the details from
this standard may not be reproduced here.

The main ideas incorporated in the chosen data format are:
1. Independence of the computer architecture of the target system (big/little

endian, variable type sizes, etc.)
2. Self-describing
3. Compact Target file size for exchange over communication networks <= 10

Mbyte
4. Target file size for direct exchange (for example USB stick in harbor) <= 256

Mbyte
5. Expandable at any time with new features
6. Data update procedures provided
7. Data origin (organization, company, etc.) included in the file.
The main idea of the ISO8211 format is that the file consists of records that can

have variable length. In the header of each record there is information about the
record type and what type of information fields this record contains.

Each field type has its own subfields defined.
Each application, like in the presented case S-101 standard for electronic charts,

defines its own record types, set of possible information fields for each record type
and subfields in each information field.

25

S-101 Charts, Database Tables for S-101 Charts...

In this definition, the S-101 specifies for each subfield how the bytes are parsed
(as 8-bit integer, 16-bit unsigned integer, 16-bit signed integer, 32-bit integer,
ASCII string, etc.). In this way an independence from the machine architecture was
achieved.

The two special characters were defined as field and subfield delimiter.
As an example, the curve record is described here. A curve record starts with the

Curve Record Identifier (CRID) field. Additional information fields are:
1. INAS-Information Association Field, is not a required field and can be

repeated as needed.
2. PTAS-Point Association Field is a required field and occurs only once in this

record type.
3. SEGH-Segment Header Field is a mandatory field.
4. C2IL 2-D-Integer Coordinate List Field, this list contains any number of YX

pairs in integer format. The conversion to float is done by division with CMFY
(Coordinate Multiplication Factor for y-coordinate) and CMFX (Coordinate
Multiplication Factor for x-coordinate), both specified in the DSSI (Dataset
Structure Information) field in the Dataset General Information Record.

Curve Record Identifier Field has the following subfields:
1. RCNM Record Name, 1 unsigned byte, always has the value 120 for this

record type (CRID).
2. RCID Record Identification Number, unsigned 32 bit, can take all values.
3. RVER Record Version, unsigned 16 bit, contains the serial number of the

Record Edition
4. RUIN Record update instruction, unsigned 8bit, always has the value 1 (Insert)
The Point Association Field PTAS has the following subfields:
1. RRNM Referenced Record, 1 byte unsigned, e.g. 110 for PRID (Point Record

Identifier).
2. RRID Referenced Record Identifier, 32-bit value without sign, all values

allowed
3. TOPI Topology Indicator, 1 byte unsigned, the following values are allowed:
a) For startpoint
b) for endpoint
c) for start and endpoint
In figure 2, as an example, a Point Record is shown along with its INSERT

command for the database.

Discovery metadata file assigned to S-101 chart
This is the XML encoded representation of exchange set catalogue features.
The most important information for navigation in this file is the name of the

map, date of publication, date of revision and area of the map given by the following
quantities:

26

Vladimir Brozović, Danko Kezić, Rino Bošnjak, Filip Bojić

1. westbound Longitude
2. eastbound Longitude
3. southbound Latitude
4. northbound Latitude.
Also the information whether this is a new edition or an update of an existing

map. In this file there is also information about the responsible publisher, their
address, responsible person and their phone number.

Information collecting and storage. The storage of the data in ISO8211 format
is primarily intended for displaying this map data. In their project, the authors have
identified the need to store this map data in such a way that the data can be searched
in a targeted manner. In order to be able to search the data very flexibly according
to various criteria, a relational database is used for data storage.

PostgreSQL Database. PostgreSQL was chosen for the project.
The following properties speak in favor of choosing this database software:
1. Free use
2. Virtually unlimited database sizes
3. Wide range of geographic functions in the GIS extension
4. Good support for synchronous (blocking) and asynchronous (non-blocking)

access from Cprograms
5. Search process planner that can be controlled via parameters. For example, the

search from newer to older entries can be carried out in this order and without sorting.
6. The number of coworkers in the search processes can be easily adapted to the

hardware architecture (number of CPUs available)
The design of the database tables and the indexing of the fields in these tables

play a very important role for the optimal usability of the data from the database

Figure 2. Point record, Write to s101_db database table PRID

27

S-101 Charts, Database Tables for S-101 Charts...

in real time. For the design of real-time applications, which are based on relatively
large database tables, good knowledge of the planning strategies when executing a
search command in the database software used must also be available. This good
knowledge of these strategies as well as of possible influences of these strategies
often enables a massive reduction of the search times (often several hundred times).
PostgreSQL is well documented in3,4).

PostGIS extension. A set of various geometric and geographic functions
extending the Postgres functionality. The extension functions distinguish between
geometric and geographic arguments.These extensions are described in5.

The functions of interest are e.g. ST_Distance, ST_Intersection etc. If the
arguments are of the type geography, e.g. the function ST_Distance calculates
the distance between two points on the sphere. If nothing else is specified in the
arguments, WGS-84 model is assumed for data in this case.

Database s101_db
The main idea of storing all nautical charts of interest in a common database is

to gain the possibility of simultaneous consideration of information from several
charts.

In order to be able to use this information from several charts simultaneously
in the software in an optimal way, several tables are defined in the database. The
tables correspond to the S-101 fields described in6.

Consequently, the following tables are defined in the database:
arcs, atcs, ccid, crid, crsh_in_csid, csid, cuco_in_ccid, dsid, facs, fasc_in_frid,

foid_in_frid, frid, ftcs, iacs, inas, irid, itcs, natc_in_crid, natc_in_fasc, natc_in_frid,
natc_in_irid, prid, rias_in_srid, spas_in_frid, srid.

In addition to these tables, the chart_range table was defined, which contains
some of discovery metadata entries from the XML file. These tables are all linked
to each other with the chart index chart_id.

If the entries of a table are sub-elements of the entries of another table, then
these entries of the sub-elements are constructed in such a way that they contain the
ID of the parent entry from its table in addition to chart_id. In this way the tables
can be connected arbitrarily deep hierarchically.

The IDs of all entries in all tables are automatically generated by Postgres. To
use this automatically generated ID in connected sub-tables, an entry is read from
the currently written table sorted by the descending ID. It is the last entry written to
the table. From this database entry the searched ID is now read.

The linking of the tables via IDs is illustrated with the example an S-101 file contains
several feature type records. The identifier of each such record has the following
information subfields: RCNM, RCID, NFTC, RVER, RUIN. The corresponding
table FRID in the database for this record type has, besides all these fields, indices
frid_id as a unique index of this record and chart_id as an index of the chart.

28

Vladimir Brozović, Danko Kezić, Rino Bošnjak, Filip Bojić

Each feature type record can further contain several FASC (Feature Association)
information fields. Each of these information fields has the following subfields:
RRNM, RRID, NFAC, NARC, FAUI.

For FASC information fields in the feature type record, the fasc_in_fried table
is provided in the database. In this table, there also exist indices fasc_id (index of
this FASC entry in the table), frid_id (index of the feature type record to which this
FASC info belongs) and chart_id as the index of the chart. Each FASC information
field can further have multiple attributes with associated subfields. The description
of these attributes is stored in the natc_in_fasc table. The entries of this table have
the entries NATC, ATIX, PAIX, ATIN, ATVL as well as an own indexnatc_id and
indices fasc_id, frid_id and chart_id, which describe the connection of these entries.

This linking is shown in figure 3.

Figure 3. Example of S-101 chart table linking in Postgres

Software for data entry into the database s101_db
The software chart_array was written in C for Linux or MacOS, and generates

entries in the s101_db database from S-101 charts.
In the process:
1. Parameters of the software are the database name (in shown cases 101_db)

and chart name without any suffixes (neither xml nor 000). For example, the call for
the chart 101HR003C0026 is chart_array s101_db 101HR003C0026

Assuming thechart data file101HR003C0026.000 and metadatafile
MD_101HR003C0026_000.xml are in the current working directory.
2. the software reads the exchange set catalogue features from the xml file.
3. if the chart is not yet in the database, the chart data from the XML file is

entered into the database table chart_range. After this WRITE operation, the chart_

29

S-101 Charts, Database Tables for S-101 Charts...

id assigned by the database is read back and is used as the ID for all new entries in
all tables. Proceed with step 7.

4. if the chart is in the database, the software checks if the chart read in now is
newer than the already stored chart.

5. if so, first the corresponding chart_id will be read from the database tablechart_
range.

6. after which all entries with the selected chart_id is deleted from all database
tables.

7. Then the chart data from the xml file are written as a single record into the chart
table. After this INSERT operation, the chart_id assigned by the database is read
back and this value is written into the chart_id field for all new entries in all tables.

8. The S-101 chart data from the ISO8211 file are parsed and from these data
corresponding entries are written into the database tables.

Memory requirements compared with ISO8211 files
Of course, it is clear that data stored in this way has a larger memory footprint

compared to original ISO8211 files. For example, the file for 101HR003C0026
chart occupies about 1633 kByte ondisk, and the disk space requirement for the
same data stored in the Postgres database is 4816 kByte. Thanks to the development
of modern NAND memories, especially in the form of eMMCs, which are mainly
used in smart phones, mass storage devices of almost any size are available for
the price of much less than 1 EUR per gigabyte in single level cell mode (greater
data security, half the capacity with the same number of cells in IC)or 0.5 EUR per
gigabyte in multi-level cellmode.

Examples of the queries used in the intelligent memory requirements
compared with ISO8211 files

The chart data stored in the database allow, for example, various statements to
be made about the calculated (future) position of the ship.

These statements can be used to better design the ship position predictors, which,
in turn, are used in equipment designed to prevent collisions at sea.

A great advantage of the chart data stored in the database is the possibility of
simultaneous use of information from any number of charts. Here are some possible
statements about the calculated future ship position as examples:

1. The calculated point is onland.
2. The calculated point is out of the allowed way for ships with dangerous goods.
3. The calculated point is too close to a dangerousspoint.
The first example shows how to check whether a future ship position is on land.

This is done by checking if the line between the current position and the calculated
position from the future intersects a curve from the database with the attribute
“Coastline”.

30

Vladimir Brozović, Danko Kezić, Rino Bošnjak, Filip Bojić

For this purpose, GIS extension functions are used. Initially, the search is for all
maps that are of interest to the route in the near future. This is done in the following
way: Position is (longitude, latitude) and search is in the chart_range table for all
chart_ids for which the following condition is met:

(longitude_west_bound<longitude< longitude_east_bound)&& (latitude_
south_bound<latitude< latitude_north_bound)

Assuming here that the given position is (16.36241,43.4626), this is done with
the following SELECT command:

SELECT chart_id FROM chart_range WHERE longitude_west_
bound<16.36241 AND longitude_east_bound>16.36241 AND latitude_south_
bound<43.4626 AND latitude_north_bound>43.4626;

The result of this command is a list of all chart_id’s in the database of charts
that contain the position (16.36241,43.4626). Of course, the search for the relevant
charts can be extended in an iterative way by including the calculated positions from
the near future in the above check. Next, for each chart_id found in the previous
step, the record with the ftcd value equal to ’Coastline’ is searched in the ftcs table.
From this record, only the value ftnc will be used in next steps. Assuming that the
chart_ids 42 and 47 were found in previous step, this is done with the following
SELECT commands:

SELECT ftnc FROM ftcs WHERE chart_id=42 and ftcd=’Coastline’;
SELECT ftnc FROM ftcs WHERE chart_id=47 and ftcd=’Coastline’;
For both charts (42 and 47), the ftnc value is 64. This is not necessarily always

the case. The following command will then find all records in the frid table that
have chart_id 42 and ftnc value 64 (all frid records that belong to a ’coast line’):

SELECT * from frid where chart_id=42 and ftnc=64 ;

For every value iiii for frid_id in the result from the last select, the following is
done:

SELECT*fromspas_in_fridwherechart_id=42ANDfrid_id=iiiiANDrrnm=120;
and from this result rrid is read.

Now for all rrid results jjjj the next SELECT in the table crid is done:
SELECT * from crid where chart_id=42 AND rcid=<rrid value jjjj from last

result>;

Each answer is one coastline on the map with chart_id equal to 42. An example
of such a search is shown on figure 4.

31

S-101 Charts, Database Tables for S-101 Charts...

Figure 4. Search for coastline curves in the database

For each curve found in this way, a check can be made to see if the line between
the current position point and the future position point intersects this line. This
check is done by using the GIS function ST_Intersection. An example for a check
of intersection between coastline curve and course line without an intersection as a
result is shown on the figure 5.

Figure 5. Check of intersection between curve and line with
no intersection as result

32

Vladimir Brozović, Danko Kezić, Rino Bošnjak, Filip Bojić

An example for a check of intersection between coastline curve and courseline
with an intersection as result is shown on figure 6.

Figure 6. Check of intersection between curve and line with
an intersection as result

The search for curves stored as composite curves in charts and in the database
has further steps in which, among other things, the CUCO table is also searched
in the manner presented. The second example below shows how a sequence of
Postgres and Postgres GIS queries can be used to check if a specified route is getting
close to a dangerous point in the near future. Dangerous points are searched in all
charts that contain the specified route. To find the charts of interest the procedure
from the previous example is used. To keep the examples simple here, only the
dangerous points with the attribute BuoyIsolatedDanger are searched. Assuming
that the chart_id’s 42 and 47 were found in previous step, this is done with the
following SELECT commands:

SELECT ftnc FROM ftcs WHERE chart_id=42and ftcd=’BuoyIsolatedDanger’;
SELECT ftnc FROM ftcs WHERE chart_id=47and ftcd=’BuoyIsolatedDanger’;
For both charts (42 and 47), the ftnc value is 51. This is not necessarily always

the case. The following command will then find all records in the frid table that have
chart_id 42 and ftnc value 51 (all frid records that belong to a ’BuoyIsolatedDanger’):

SELECT * from frid where chart_id=42 AND ftnc=51;
For every value iiii for frid_id in the result from the last select, the following is

done:
SELECT * from spas_in_frid where chart_id=42 AND frid_id=iiii AND

rrnm=110;
and from this result rrid is read.

33

S-101 Charts, Database Tables for S-101 Charts...

Now for all rrid results jjjj the next SELECT in the table prid is done:
SELECT * from prid where chart_id=42 AND rcid=<rrid value jjjj from last

result>;
Each result is one dangerous point on the map with chart_id equal to 42.The

example how to find a dangerous point in the database is shown in figure 7.

Figure 7. Example how to find dangerous point in the chart database

Postgres also gives the possibility to nest several commands with the construction
IN in a single SELECT command. Example of such a nesting, which finds all
dangerous points with type BuoyIsolatedDanger from the map with chart_id=42,
is shown in figure 8.

Figure 8. Example how to find all dangerous points
of specified type with single command

For each dangerous point found in this way, a check can be made to see if the
line between the current position point and the future position point comes to close
this point. This check is done by using the GIS function ST_Intersection, which
has already been used here. First, a safety radius around the dangerous points is

34

Vladimir Brozović, Danko Kezić, Rino Bošnjak, Filip Bojić

defined. This can be, for example, five times the width of the ship. For a ship width
of 20m in this case the assumed safety radius is 100m.

In figure 9, an example is shown where the course from the point (16.12751,
43.3788761) to the point (16.1593535,43.42376) comes too close to a dangerous
point (16.1475, 43.40875).

Figure 9. Example when the course to second point comes

too close to a dangerous point

Between the points (16.14807811...,43.40787...) and (16.148941...,43.409091...)
the course comes closer than 100m to the dangerous point.

Conclusions
The new standard group S-100 describes powerful possibilities for coding of

several types of data used in navigation. Storage of this data in a relational database
allows searching the data according to many criteria. The authors have presented
here a way in which they built the database for storing S-101 data in an ongoing
project. The software for reading in the S-101 files and storing this data in the
presented database was written by authors. The authors were guided in the design
of the database and powerful search capabilities resulting from this design by
needs arising in the development of various algorithms for autonomous vessels.
Furthermore, these search capabilities combined with information about the ship’s
current position, speed and course could generate information on an additional
display that would help the officer in manned navigation to make some important
decisions in a shorter time. With the help of such techniques, it would be relatively
easy to prevent shipping accidents such as those involving the Marco Polo ferry.

NOTES
1. INTERNATIONAL HYDROGRAPHIC ORGANIZATION. S-100 Specification

numbers. 2020. URL: http://s100.iho.int/S100/home/s-100-specification-numbers
(visited on 05/01/2020).

35

S-101 Charts, Database Tables for S-101 Charts...

2. INTERNATIONAL STANDARD ISO/IEC. ISO/IEC 8211 Information
technology - Specification for a data descriptive file for information interchange.
Second edition. Reviewed and confirmed in 2000. IEC, Oct. 1994.

3. The PostgreSQL Global Development Group. PostgreSQL 9.1.24 Documentation
2016. URL: https://www.postgresql.org/docs/9.1/ (visited on 05/04/2021).

4. The PostgreSQL Global Development Group. PostgreSQL 13.3 Documentation.
URL: https://www.postgresql.org/files/documentation/pdf/13/postgresql-
13-A4.pdf/ (visited on 13/04/2021).

5. The PostGIS Development Group. PostGIS 3.1.2 Manual. URL: https://postgis.
net/docs/ (visited on 17/04/2021).

6. INTERNATIONAL HYDROGRAPHIC ORGANIZATION. IHO ELECTRONIC
NAVIGATIONAL CHART PRODUCT SPECIFICATION. 1.0.0. IHO Pub-
lication S-101. 4b quai Antoine 1er, Principauté de Monaco: International
Hydrographic Organization, Dec. 2018.

 Vladimir Brozović
Danko Kezić

https://orcid.org/0000-0003-2055-8039
Rino Bošnjak

https://orcid.org/0000-0002-1795-333X
 Filip Bojić

https://orcid.org/0000-0002-9706-200X
Faculty of Maritime Studies

University of Split
Split, Croatia

E-mail: vladimir.brozovic@pfst.hr
E-mail: danko.kezic@pfst.hr
E-mail: rino.bosnjak@pfst.hr

E-mail: filip.bojic@pfst.hr

