
30

Математика Volume 65, Mathematics
и информатика Number 1, 2022 and Informatics

DEVELOPING PROBLEM SOLVING COMPETENCY
USING FUNCTIONAL PROGRAMMING STYLE

Muharem Mollov, PhD student1), Petar Petrov, PhD student2)

1) “Paisii Hilendarski” University – Plovdiv (Bulgaria)
2) “Prof. Assen Zlatarov” University – Burgas (Bulgaria)

Abstract. This paper is dedicated to the challenges of the education that high
school students are facing while developing specific competencies related to the
functional programming style (FPS). The presented educational approach consists
of two components: first, learning FPS by comparing it with the imperative,
procedural, object-oriented and logic programming paradigms and second, using
competencies based approach for solving practical problems with functional
programming. The paper presents a problem set and the phases of its application
in the learning process. The results and the analysis of the approach are presented
in two groups of high school students which develop successfully their specific
competencies for using FPS for practical problem solving. The presented results
show that the students are understanding easier FPS and its differences from their
known paradigms (imperative, procedural, object-oriented and logical) by using
a problem set with properly prepared practical problems which they can solve in
multiple ways which lead them to the FPS solution.

Keywords: functional programming; education; software engineering;
competency

Introduction
In the Computer Science (CS) education in general and profession “Applied

programmer” (PAP) (Staribratov 2020), the students are learning and acquiring the
competencies of the functional programming style (FPS). The acquired knowledge,
skills and competencies for FPS are listed in the National standards in education
(NSE)1) for the PAP. Two groups of students were observed. After an analysis of
the problems which the students are facing while learning FPS as part of the Na-
tional programme “Education for IT Career“ (NPEITC)2) of Ministry of Education
and Science (MES) of Bulgaria was found that the students have difficulties with
learning and applying FPS because for them this is a whole new way of thinking
and constructing a solution of a problem. As part of their education in NPEITC the
students have access to e-learning resources on a Moodle-based platform3) .This
paper provides a problem set and the phases of developing FPS competencies.

https://doi.org/10.53656/math2022-1-3-dev Educational Technologies
Образователни технологии

31

Developing Problem Solving...

The problem set offers practical approach for comparative learning of the function-
al, imperative, procedural, object-oriented and logic programming paradigms. On
the other side, the accomplished education is directed towards development of the
competency of the learners which means that they need to solve real and practical
challenges. The problems which they receive are not formulated in the terms of
FPS. Instead they are practical and require the possession of specific competencies
allowing the future professionalists to effectively analyse the problems and pick
FPS approach for its solution.

The ideas of competency-based education (CBE) are developed in the last 50
years. The present article considers the European qualification framework (EQF)
for lifelong learning4). It is worth to mention the results in this area achieved in
the professional education in Bulgaria by applying competency-based education
for the profession “System Programmer“ in the frame of “Bulgarian-German pro-
ject for improving the opportunities for employment of young people in Bulgaria“
(Staribratov 2009) where they develop the foundations of the National educational
standard (NES) for the profession. CBE for PAP is compliant with the related com-
petency European Commission frameworks 4), 5), 6) and the recommendations of the
IT business in Bulgaria7), 8) regarding the competencies which the job applicants
should have.

NPEITC provides education for high school students based on the developed
standards, curriculum and programmes. One of the educational modules in the cur-
riculum is „Functional programming“ (FP). According to the Level 4 of EQF there
are units of learning outcomes (ULO) in the NES. The described learning out-
comes, including knowledge, skills and competencies, are reflected in the curricula
for both theoretical and practical education and can be generalized as the ability to
solve practical problems by using FPS.

Developing FPS competencies during education
In November 2020 a training in module FP was conducted as a part of the cur-

riculum of NPEITC. Two groups were observed: students at High School “Hristo
Botev“ in Chepintsi, Bulgaria and Vocational High School of Electronics and En-
gineering “Konstantin Fotinov“ Burgas, experienced similar difficulties and obsta-
cles in learning FPS. The participants are facing the challenge to form competencies
for using FPS related with its essence and application. The main problem which
occurs for the students during the FP module is related to the new programming
style which is different compared to the ones (imperative, procedural, object-ori-
ented, logical) which they know and understand to this moment. FPS offers many
advantages such as modularity, easier code maintenance, lower code redundancy,
helps easier and more effective data processing and more (Hughes 1989). Teo-
dosiev (Teodosiev 2006; 2010; 2011) analyses the problems of the programming
education and the different programming paradigms, including FPS and researches

32

Muharem Mollov, Petar Petrov

the influence of the programming style. According to his research the programming
language and paradigm strongly influences the ability of novice programmers to
create algorithms and programs. His suggestion is to not only teach programming
languages but also different styles of programming and their corresponding good
practices.

There are many functional programming languages or possibility for applying
of FP – many libraries for C++ (MCNamara 2004), Language Integrated Query
(LINQ) in C#, which provides elegant and effective approach for solving many
routine problems in programming related to data-processing, there is also a special
FP language in the. NET platform called – F#, which provides accessible syntax
and supports concurrency.

During the conducted edition of teaching the FP module it was noticed that the
students are naturally looking for a parallel between the functional and the proce-
dure paradigms. This happens while the students are attempting to solve problems.
A possible reason is that the students already have knowledge in procedural pro-
gramming, which leads them to intuitively looking for similarities. Sometimes they
do not realise that these are two different paradigms and often think that the FP is
just an upgrade of their knowledge. While trying to solve a problem initially they
look for solutions closer to their familiar style of programming and they are trying
to apply their existing knowledge and skills to construct a solution.

To solve this problems the authors of this paper recommend to point the sim-
ilarities and the differences between the functional paradigm and the other ones,
with which the students are already familiar. Another recommendation is to make
parallels between solutions using FP and solutions using the procedural approach.

Based on direct observations during the education for the profession “Applied
programmer“ in the two groups, it is found that there is a “stereotype“ in favour of
the procedural paradigm. The students seem to have difficulties to construct solu-
tions based on the FP for problems that require functional approach. This brings the
need to look for approaches to form the competencies for using FPS.

There is a variety of approaches for developing competencies in FPS in the CS
education. Generally, they can be separated in two groups – comparative approach
and practical approach for learning FP.

An example of a comparative approach is the approach of Joosten (Joost-
en1993) who proposes comparative analysis of imperative and functional style
(Joosten 1993). Banchev (Banchev 2017) analyses the effectiveness of the intro-
duction programming courses using different paradigms – imperative and proce-
dural using Java and Ruby. Another applied approach is using FP as an explana-
tion of the object-oriented paradigm (Kristensen 2001). Thompson (Thompson
1997) suggests an approach for problem solving valid for both procedural and
functional programming languages consisting of the following steps: understand-
ing, solution design, coding and reflection. Hanus (Hanus 1997) proposes a gen-

33

Developing Problem Solving...

eralized model for learning functional and logic programming using the language
Curry (Hanus 1995), where the logic programming is considered as an extension
of FP (Hanus 2007). Todorova (Todorova 2010) and Zinoviev9) seen function-
al programming based on λ-calculus as natural subarea of logic programming.
Joosten (Joosten 1993) prefers the idea of using FP in the beginning of the CS
education and shows in that the students are highly motivated and develop high-
er level of algorithmic thinking. Satoshy Egi (Egi 2020) suggests FPS oriented
towards pattern-matching, allowing to define not only the most basic data pro-
cessing functions but more practical mathematical algorithms such as Boolean
satisfaction problem (or SAT for short) (Eén, 2006)10), system of equations and
so on. Diaconu suggests inductive FP (IFP) for generating modular functional
programs and function reusage (Diaconu 2020).

Many authors suggest concepts and approaches for learning FP based on Haskell
(Hudak 1989), (Hudak 1999), (Davie 1992), (Bird 1998), (Thompson 1993).

Among the practical approaches we can point out the method of gamification,
used for the development of apps, such as Soccer Fun (Achten 2008), block pro-
gramming (Poole 2019). M. Fansler (Fansler 2015) proposes approach which uses
a high-level language to create and manipulate multimedia and interactivity to
teach FP. Promising results are shown by Chattopadhyay (Chattopadhyay et all
2018), who proposed learning functional programming through the STEM and
STEAM approach in which the students are having fun, learn by experience by
programming learning robots with the aim to gain knowledge, develop skills and
competencies.

In the presented article it is chosen an approach, based on comparative analysis
and analogies between FPS, procedure style and logic programming, taking into
consideration the short summary of the different educational approaches, the aims,
which are listed in the curriculum and the duration of teaching FP module.

Aim of the research
To check the acquired knowledge, skills and competencies integrated in the gen-
eral competency for FPS of the students regarding their work with practical
assignments by the proposed comparative approach with the other programming
styles and paradigms.

Research methods
The research uses the following methods: observations, polls with teachers and

students, tests, result analysis.
Methodological tools
Methodological tools used in this research:
А) Set of problems which help the development of knowledge, skills and com-

petencies related to the usage of FPS

34

Muharem Mollov, Petar Petrov

B) Software and technological means: hardware, educational software for FP
Design (phases) of the research – Research of the efficiency of the proposed

methodology.
To gain feedback on the achievements of the students acquiring to the compe-

tencies listed in the NES and in the curriculum we developed a problem set, a test,
and a practical assignment supported by a sample solution.

It is suggested to follow these steps:
1. Solving the problem following the procedural style.
2. Using recursion in procedural style wherever it is possible (for description of

algorithms, complex data structures, etc.).
3. Substitution of the procedural style with declarative style and usage of pure

functions and recursion.
4. Suggesting a solution which is close to the logic programming.
To achieve that the following sample problems are provided, showing applica-

tion of the suggested algorithm for transforming the solution, based on a procedural
style, to a solution, based on the FPS. A problem set is prepared to develop the
competencies related to FSP (see unit 10 of the learning outcomes in the NES),
in which alternative solutions are provided in order to allow easier adaptation of
the students to the functional paradigm. After presenting and analysing different
sample solutions, the students receive multiple problems as a test, which require
the acquisition of competencies, related to FPS. The last part of the check of the
level of knowledge of FPS is an assignment in which the students should propose
practical problems along with the solutions based on FPS.

Research execution
The research consists of 3 main steps: a) Solving problem 1 and 2; b) Test, based

on the problems 3 and 4; and c) Verification of the problem-solving competen-
cies by asking students to propose a practical problem and its solution – problems
5 and 6.

The students and their teacher solve problem 1 in 3 ways. The aims are: to show
a way to overcome the stereotypes of the procedural way of thinking; to observe the
solutions: close to the procedural (imperative) programming style, clean functional
programming-based solution, and a solution which corresponds with the logic
programming style.

1. Sum of list elements
Write a program which sums the elements of a list

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%20

1.%20Sum%20Of%20Elements.hs shorturl.at/irDVY

35

Developing Problem Solving...

5

https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%201.%20Sum%2
0Of%20Elements.hs shorturl.at/irDVY

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

sumElements totalSum list =
 if null list
 then totalSum
 else sumElements (totalSum + head list) (tail list)

sumElements1 totalSum [] = totalSum
sumElements1 totalSum (x : xs) = sumElements1 (x + totalSum) xs

sumElements2 = foldl (+) 0

main = do
 input <- getLine
 let list = read input :: [Integer]

 let result = sumElements 0 list
 print result

 let result1 = sumElements1 0 list
 print result1

 let result2 = sumElements2 list
 print result2

The task implies multiple solutions, the first of which is close to the procedural style of

programming and is easily understandable for the students. The second one is closer to the
logical programming and the last one uses the function foldl. According to the poll, the first
way is easier and it looks the students are familiar with it. After analysis of the second
solution, the students find formal connection between the two ways which they remember,
understand and eventually apply. The third way uses the foldl function which offers built-in
construction making the solution much shorter.

Problem 2 shows how to solve a practical problem with the help of foldl, zipWith and
map functions. The aim is to gain knowledge about these functions.

2. Receipt
Write a program, which calculates the total the amount of purchases, including VAT. The
input input for each purchase is its quantity and the unit price without VAT.

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%202.%20Receipt.hs
shorturl.at/sxFH5

 1
 2
 3
 4
 5
 6

-- receipt
calculateVAT x = x * 1.2

main = do
 input1 <- getLine
 let quantities = read input1 :: [Float]

The task implies multiple solutions, the first of which is close to the procedural
style of programming and is easily understandable for the students. The second one
is closer to the logic programming and the last one uses the function foldl. Accord-
ing to the poll, the first way is easier and it looks the students are familiar with it.
After analysis of the second solution, the students find formal connection between
the two ways which they remember, understand and eventually apply. The third
way uses the foldl function which offers built-in construction making the solution
much shorter.

Problem 2 shows how to solve a practical problem with the help of foldl, zip-
With and map functions. The aim is to gain knowledge about these functions.

2. Receipt
Write a program that calculates the total amount of purchases,including 20%

VAT. The input for each purchase is its quantity and the unit price without VAT.

Solution: https://github.com/msmfenn/FunctionalProgramming/blob/main/
Task%202.%20Receipt.hs shorturl.at/sxFH5

5

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

 else sumElements (totalSum + head list) (tail list)

sumElements1 totalSum [] = totalSum
sumElements1 totalSum (x : xs) = sumElements1 (x + totalSum) xs

sumElements2 = foldl (+) 0

main = do
 input <- getLine
 let list = read input :: [Integer]

 let result = sumElements 0 list
 print result

 let result1 = sumElements1 0 list
 print result1

 let result2 = sumElements2 list
 print result2

The task implies multiple solutions, the first of which is close to the procedural style of

programming and is easily understandable for the students. The second one is closer to the
logical programming and the last one uses the function foldl. According to the poll, the first
way is easier and it looks the students are familiar with it. After analysis of the second
solution, the students find formal connection between the two ways which they remember,
understand and eventually apply. The third way uses the foldl function which offers built-in
construction making the solution much shorter.

Problem 2 shows how to solve a practical problem with the help of foldl, zipWith and
map functions. The aim is to gain knowledge about these functions.

2. Receipt
Write a program, which calculates the total the amount of purchases, including VAT. The
input input for each purchase is its quantity and the unit price without VAT.

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%202.%20Receipt.hs
shorturl.at/sxFH5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

-- receipt
calculateVAT x = x * 1.2

main = do
 input1 <- getLine
 let quantities = read input1 :: [Float]

 input2 <- getLine
 let prices = read input2 :: [Float]

 let pricesWithVAT = map calculateVAT prices
 let pricesWithVAT1 = map (* 1.2) prices -- alternatively
 let values = zipWith (*) quantities prices
 let totalSum = sum values

36

Muharem Mollov, Petar Petrov

5

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

 else sumElements (totalSum + head list) (tail list)

sumElements1 totalSum [] = totalSum
sumElements1 totalSum (x : xs) = sumElements1 (x + totalSum) xs

sumElements2 = foldl (+) 0

main = do
 input <- getLine
 let list = read input :: [Integer]

 let result = sumElements 0 list
 print result

 let result1 = sumElements1 0 list
 print result1

 let result2 = sumElements2 list
 print result2

The task implies multiple solutions, the first of which is close to the procedural style of

programming and is easily understandable for the students. The second one is closer to the
logical programming and the last one uses the function foldl. According to the poll, the first
way is easier and it looks the students are familiar with it. After analysis of the second
solution, the students find formal connection between the two ways which they remember,
understand and eventually apply. The third way uses the foldl function which offers built-in
construction making the solution much shorter.

Problem 2 shows how to solve a practical problem with the help of foldl, zipWith and
map functions. The aim is to gain knowledge about these functions.

2. Receipt
Write a program, which calculates the total the amount of purchases, including VAT. The
input input for each purchase is its quantity and the unit price without VAT.

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%202.%20Receipt.hs
shorturl.at/sxFH5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

-- receipt
calculateVAT x = x * 1.2

main = do
 input1 <- getLine
 let quantities = read input1 :: [Float]

 input2 <- getLine
 let prices = read input2 :: [Float]

 let pricesWithVAT = map calculateVAT prices
 let pricesWithVAT1 = map (* 1.2) prices -- alternatively
 let values = zipWith (*) quantities prices
 let totalSum = sum values

6

15
16
17
18
19
20
21
22
23
24

 let valuesWithVAT = zipWith (*) quantities pricesWithVAT
 let totalSumWithVAT = sum valuesWithVAT

 print values
 print totalSum
 print (totalSum * 1.2) -- the total sum with the VAT coefficient

 print valuesWithVAT
 print totalSumWithVAT --the total sum with VAT obtained with summation,
should be the same as the totalSum * 1.2 if everything is correct

This task presents different basic techniques for data processing based on FPS with the
help of foldl, map, zipWith and lambda functions.

Problem 3 and 4 are given as a test for individual solving. The students are divided in
two groups.

3. Cargo 1
Different by size and count full tanks contain liquid, which should be transported by a

tanker, which provides a given capacity. Help the team by deciding if it is possible to fit the
cargo by taking into account the tanker’s capacity. You will receive the capacity (free space
as volume measure) of the tanker, a list of the diameters, a list of the lengths, and the
amount of each tank type. If the cargo does fit in the tanker, output "It is possible to carry",
otherwise print "The load is too large"

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%203.%20Cargo%201.
hs shorturl.at/euR24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

isPossibleToCarry x y
 | x <= y = "It is possible to carry"
 | otherwise = "The load is too large"

isPossibleToCarry1 x y =
 if x <= y
 then "It is possible to carry"
 else "The load is too large"

main = do
 input <- getLine
 let tankerVolume = read input :: Float

 input1 <- getLine
 let diameters = read input1 :: [Float]

 input2 <- getLine
 let lenghts = read input2 :: [Float]

 input3 <- getLine
 let tankCounts = read input3 :: [Float]

 let volumes = zipWith (\d l -> pi / 4 * d * d * l) diameters lenghts

This task presents different basic techniques for data processing based on FPS
with the help of foldl, map, zipWith and lambda functions.

Problem 3 and 4 are given as a test for individual solving. The students are di-
vided in two groups.

3. Cargo 1
Different by size and count full tanks contain liquid, which should be transport-

ed by a tanker, which provides a given capacity. Help the team by deciding if it is
possible to fit the cargo by taking into account tanker capacity. You will receive the
capacity (free space as volume measure) of the tanker, a list of the diameters, a
list of the lengths, and the amount of each tank type. If the cargo does fit in the
tanker, output “It is possible to carry”, otherwise print “The load is too large”

Solution: https://github.com/msmfenn/FunctionalProgramming/blob/main/
Task%203.%20Cargo%201.hs shorturl.at/euR24

6

15
16
17
18
19
20
21
22
23
24

 let valuesWithVAT = zipWith (*) quantities pricesWithVAT
 let totalSumWithVAT = sum valuesWithVAT

 print values
 print totalSum
 print (totalSum * 1.2) -- the total sum with the VAT coefficient

 print valuesWithVAT
 print totalSumWithVAT --the total sum with VAT obtained with summation,
should be the same as the totalSum * 1.2 if everything is correct

This task presents different basic techniques for data processing based on FPS with the
help of foldl, map, zipWith and lambda functions.

Problem 3 and 4 are given as a test for individual solving. The students are divided in
two groups.

3. Cargo 1
Different by size and count full tanks contain liquid, which should be transported by a

tanker, which provides a given capacity. Help the team by deciding if it is possible to fit the
cargo by taking into account the tanker’s capacity. You will receive the capacity (free space
as volume measure) of the tanker, a list of the diameters, a list of the lengths, and the
amount of each tank type. If the cargo does fit in the tanker, output "It is possible to carry",
otherwise print "The load is too large"

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%203.%20Cargo%201.
hs shorturl.at/euR24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

isPossibleToCarry x y
 | x <= y = "It is possible to carry"
 | otherwise = "The load is too large"

isPossibleToCarry1 x y =
 if x <= y
 then "It is possible to carry"
 else "The load is too large"

main = do
 input <- getLine
 let tankerVolume = read input :: Float

 input1 <- getLine
 let diameters = read input1 :: [Float]

 input2 <- getLine
 let lenghts = read input2 :: [Float]

 input3 <- getLine
 let tankCounts = read input3 :: [Float]

 let volumes = zipWith (\d l -> pi / 4 * d * d * l) diameters lenghts

37

Developing Problem Solving...

6

15
16
17
18
19
20
21
22
23
24

 let valuesWithVAT = zipWith (*) quantities pricesWithVAT
 let totalSumWithVAT = sum valuesWithVAT

 print values
 print totalSum
 print (totalSum * 1.2) -- the total sum with the VAT coefficient

 print valuesWithVAT
 print totalSumWithVAT --the total sum with VAT obtained with summation,
should be the same as the totalSum * 1.2 if everything is correct

This task presents different basic techniques for data processing based on FPS with the
help of foldl, map, zipWith and lambda functions.

Problem 3 and 4 are given as a test for individual solving. The students are divided in
two groups.

3. Cargo 1
Different by size and count full tanks contain liquid, which should be transported by a

tanker, which provides a given capacity. Help the team by deciding if it is possible to fit the
cargo by taking into account the tanker’s capacity. You will receive the capacity (free space
as volume measure) of the tanker, a list of the diameters, a list of the lengths, and the
amount of each tank type. If the cargo does fit in the tanker, output "It is possible to carry",
otherwise print "The load is too large"

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%203.%20Cargo%201.
hs shorturl.at/euR24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

isPossibleToCarry x y
 | x <= y = "It is possible to carry"
 | otherwise = "The load is too large"

isPossibleToCarry1 x y =
 if x <= y
 then "It is possible to carry"
 else "The load is too large"

main = do
 input <- getLine
 let tankerVolume = read input :: Float

 input1 <- getLine
 let diameters = read input1 :: [Float]

 input2 <- getLine
 let lenghts = read input2 :: [Float]

 input3 <- getLine
 let tankCounts = read input3 :: [Float]

 let volumes = zipWith (\d l -> pi / 4 * d * d * l) diameters lenghts

7

24
25
26
27
28
29
30

 print volumes -- volumes
 let totalVolumes = zipWith (*) volumes tankCounts
 let totalVolume = sum totalVolumes
 print totalVolume
 print (isPossibleToCarry totalVolume tankerVolume)
 print (isPossibleToCarry1 totalVolume tankerVolume) -- alternatively

4. Cargo 2
A client would like to order different by size and count tanks. Help the team by deciding

whether it is possible the order to be fulfilled with the available sheet metal. You will receive
the area of the sheet metal, list of diameters of the tanks, lengths and quantity of the tanks of
each kind. If the needed metal sheet is available, print „It is possible to be produced",
otherwise print „There are not enough materials".

Solution:

https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%204.%20Cargo
%202.hs shorturl.at/mKR35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

isPossibleToMake x y
 | x <= y = "It is possible to make"
 | otherwise = "The materials are not enough"

isPossibleToMake1 x y =
 if x <= y
 then "It is possible to make"
 else "The materials are not enough"

main = do
 input <- getLine
 let materials = read input :: Float
 input1 <- getLine
 let diameters = read input1 :: [Float]
 input2 <- getLine
 let lenghts = read input2 :: [Float]
 input3 <- getLine
 let tankCounts = read input3 :: [Float]
 let aroundAreas = zipWith (\d l -> pi * d * l) diameters lenghts
 print aroundAreas -- around areas
 let totalAreas = zipWith (*) aroundAreas tankCounts
 let totalArea = sum totalAreas
 print totalArea
 print (isPossibleToMake totalArea materials)
 print (isPossibleToMake1 totalArea materials) -- alternatively

Results

Problem 3 was solved by 80% of the students, where 60% of them used
isPossibleToCarry1 function, 10% of students made mistake in the formula zipWith (\r l-
>2*3.14*r*r*l), instead zipWith (\d l->pi/4*d*d*l), which is explained by the mixing of the
radius and diameter and the formulas for calculating circumference and area.

4. Cargo 2
A client would like to order different by size and count tanks. Help the team

by deciding whether it is possible the order to be fulfilled with the available sheet
metal. You will receive the area of the sheet metal, list of diameters of the tanks,
lengths and quantity of the tanks of each kind. If the needed metal sheet is availa-
ble, print „It is possible to be produced”, otherwise print „There are not enough
materials”.

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%20

4.%20Cargo%202.hs shorturl.at/mKR35

7

24
25
26
27
28
29
30

 print volumes -- volumes
 let totalVolumes = zipWith (*) volumes tankCounts
 let totalVolume = sum totalVolumes
 print totalVolume
 print (isPossibleToCarry totalVolume tankerVolume)
 print (isPossibleToCarry1 totalVolume tankerVolume) -- alternatively

4. Cargo 2
A client would like to order different by size and count tanks. Help the team by deciding

whether it is possible the order to be fulfilled with the available sheet metal. You will receive
the area of the sheet metal, list of diameters of the tanks, lengths and quantity of the tanks of
each kind. If the needed metal sheet is available, print „It is possible to be produced",
otherwise print „There are not enough materials".

Solution:

https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%204.%20Cargo
%202.hs shorturl.at/mKR35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

isPossibleToMake x y
 | x <= y = "It is possible to make"
 | otherwise = "The materials are not enough"

isPossibleToMake1 x y =
 if x <= y
 then "It is possible to make"
 else "The materials are not enough"

main = do
 input <- getLine
 let materials = read input :: Float
 input1 <- getLine
 let diameters = read input1 :: [Float]
 input2 <- getLine
 let lenghts = read input2 :: [Float]
 input3 <- getLine
 let tankCounts = read input3 :: [Float]
 let aroundAreas = zipWith (\d l -> pi * d * l) diameters lenghts
 print aroundAreas -- around areas
 let totalAreas = zipWith (*) aroundAreas tankCounts
 let totalArea = sum totalAreas
 print totalArea
 print (isPossibleToMake totalArea materials)
 print (isPossibleToMake1 totalArea materials) -- alternatively

Results

Problem 3 was solved by 80% of the students, where 60% of them used
isPossibleToCarry1 function, 10% of students made mistake in the formula zipWith (\r l-
>2*3.14*r*r*l), instead zipWith (\d l->pi/4*d*d*l), which is explained by the mixing of the
radius and diameter and the formulas for calculating circumference and area.

38

Muharem Mollov, Petar Petrov

7

24
25
26
27
28
29
30

 print volumes -- volumes
 let totalVolumes = zipWith (*) volumes tankCounts
 let totalVolume = sum totalVolumes
 print totalVolume
 print (isPossibleToCarry totalVolume tankerVolume)
 print (isPossibleToCarry1 totalVolume tankerVolume) -- alternatively

4. Cargo 2
A client would like to order different by size and count tanks. Help the team by deciding

whether it is possible the order to be fulfilled with the available sheet metal. You will receive
the area of the sheet metal, list of diameters of the tanks, lengths and quantity of the tanks of
each kind. If the needed metal sheet is available, print „It is possible to be produced",
otherwise print „There are not enough materials".

Solution:

https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%204.%20Cargo
%202.hs shorturl.at/mKR35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

isPossibleToMake x y
 | x <= y = "It is possible to make"
 | otherwise = "The materials are not enough"

isPossibleToMake1 x y =
 if x <= y
 then "It is possible to make"
 else "The materials are not enough"

main = do
 input <- getLine
 let materials = read input :: Float
 input1 <- getLine
 let diameters = read input1 :: [Float]
 input2 <- getLine
 let lenghts = read input2 :: [Float]
 input3 <- getLine
 let tankCounts = read input3 :: [Float]
 let aroundAreas = zipWith (\d l -> pi * d * l) diameters lenghts
 print aroundAreas -- around areas
 let totalAreas = zipWith (*) aroundAreas tankCounts
 let totalArea = sum totalAreas
 print totalArea
 print (isPossibleToMake totalArea materials)
 print (isPossibleToMake1 totalArea materials) -- alternatively

Results

Problem 3 was solved by 80% of the students, where 60% of them used
isPossibleToCarry1 function, 10% of students made mistake in the formula zipWith (\r l-
>2*3.14*r*r*l), instead zipWith (\d l->pi/4*d*d*l), which is explained by the mixing of the
radius and diameter and the formulas for calculating circumference and area.

Results
Problem 3 was solved by 80% of the students, where 60% of them used isPos-

sibleToCarry1 function, 10% of students made mistake in the formula zipWith
(\r l->2*3.14*r*r*l), instead zipWith (\d l->pi/4*d*d*l), which is explained by the
mixing of the radius and diameter and the formulas for calculating circumference
and area.

Problem 4 was solved by 60% of the students, 40% used isPossibleToCarry1,
20% used isPossibleToCarry and 20% did not use a special function.

Problems 5 and 6 are suggested by the students. Please note that the provided
solutions are correct.

5. Terracotta and faience
In a building materials store the seller and the client are facing the following

problem: The client likes a few kinds of square terracotta tiles for floor and has to
calculate how much packages of each should buy. You will receive a sequence of
sizes of tiles of each type, amount of tiles in each package of each tile’s type and
the area of the room which needs to be covered. Output the sequence of the number
of packages of each tile’s type that are needed to cover the area.

Solution: https://github.com/msmfenn/FunctionalProgramming/blob/main/
Task%205.%20Terracotta%20and%20faience.hs shorturl.at/exzPX

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

squaringList list =
 if null list
 then []
 else head list * head list : squaringList (tail list)

squaringList1 [] = []
squaringList1 (x : xs) = (x * x) : squaringList1 xs

squaring x = x * x

squaringList2 = map squaring

squaringList3 = map (\x -> x * x)

main = do
 input1 <- getLine
 let areaToCover = read input1 :: Double
 input2 <- getLine
 let lenghts = read input2 :: [Double]
 input3 <- getLine
 let countsPerPacket = read input3 :: [Double]

 let pieceArea = squaringList lenghts
 let areasPerPacket = zipWith (*) pieceArea countsPerPacket
 let rec = map recip areasPerPacket
 let packets = map (areaToCover *) rec
 let roundedPackets = map ceiling packets
 print roundedPackets

It is interesting that the problem is solved by similar methods as problem 1 – method

close to the imperative programming, logical programming, and to the functional style-based
method.

6. Analog watch
Calculate the angle between two arrows of a clock by knowing the coordinates of the

hour’s arrow and the minute’s arrow. The beginning of the coordinate system is in the centre
of the clock-face.

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%206.%20Analog%20
watch.hs shorturl.at/ixNQ2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

main = do
 let a = [0.707, 0.707] --sqrt(2)/2 45 degree
 let b = [-2, 4 * sqrt 3 / 2] -- 120 degree
 let abScalar = sum (zipWith (*) a b)

 let aLen = sqrt (sum (zipWith (*) a a))
 -- let aLen = sqrt(foldl (+) 0 (zipWith(*) a a))-- alternatively
 let bLen = sqrt (sum (zipWith (*) b b))
 -- let aLen = sqrt(foldl (+) 0 (zipWith(*) b b))-- alternatively
 let cosAngle = abScalar / (aLen * bLen)

 let angle = round (acos cosAngle / pi * 180)
 print angle

39

Developing Problem Solving...

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

squaringList list =
 if null list
 then []
 else head list * head list : squaringList (tail list)

squaringList1 [] = []
squaringList1 (x : xs) = (x * x) : squaringList1 xs

squaring x = x * x

squaringList2 = map squaring

squaringList3 = map (\x -> x * x)

main = do
 input1 <- getLine
 let areaToCover = read input1 :: Double
 input2 <- getLine
 let lenghts = read input2 :: [Double]
 input3 <- getLine
 let countsPerPacket = read input3 :: [Double]

 let pieceArea = squaringList lenghts
 let areasPerPacket = zipWith (*) pieceArea countsPerPacket
 let rec = map recip areasPerPacket
 let packets = map (areaToCover *) rec
 let roundedPackets = map ceiling packets
 print roundedPackets

It is interesting that the problem is solved by similar methods as problem 1 – method

close to the imperative programming, logical programming, and to the functional style-based
method.

6. Analog watch
Calculate the angle between two arrows of a clock by knowing the coordinates of the

hour’s arrow and the minute’s arrow. The beginning of the coordinate system is in the centre
of the clock-face.

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%206.%20Analog%20
watch.hs shorturl.at/ixNQ2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

main = do
 let a = [0.707, 0.707] --sqrt(2)/2 45 degree
 let b = [-2, 4 * sqrt 3 / 2] -- 120 degree
 let abScalar = sum (zipWith (*) a b)

 let aLen = sqrt (sum (zipWith (*) a a))
 -- let aLen = sqrt(foldl (+) 0 (zipWith(*) a a))-- alternatively
 let bLen = sqrt (sum (zipWith (*) b b))
 -- let aLen = sqrt(foldl (+) 0 (zipWith(*) b b))-- alternatively
 let cosAngle = abScalar / (aLen * bLen)

 let angle = round (acos cosAngle / pi * 180)
 print angle

It is interesting that the problem is solved by similar methods as problem 1
– method close to the imperative programming, logic programming, and to the
functional style-based method.

6. Analog watch
Calculate the angle between the arrows of a clock given the coordinates of the

hour’s arrow and the minute’s arrow. The origin of the coordinate system is in the
centre of the clock-face.

Solution: https://github.com/msmfenn/FunctionalProgramming/blob/main/
Task%206.%20Analog%20watch.hs shorturl.at/ixNQ2

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

squaringList list =
 if null list
 then []
 else head list * head list : squaringList (tail list)

squaringList1 [] = []
squaringList1 (x : xs) = (x * x) : squaringList1 xs

squaring x = x * x

squaringList2 = map squaring

squaringList3 = map (\x -> x * x)

main = do
 input1 <- getLine
 let areaToCover = read input1 :: Double
 input2 <- getLine
 let lenghts = read input2 :: [Double]
 input3 <- getLine
 let countsPerPacket = read input3 :: [Double]

 let pieceArea = squaringList lenghts
 let areasPerPacket = zipWith (*) pieceArea countsPerPacket
 let rec = map recip areasPerPacket
 let packets = map (areaToCover *) rec
 let roundedPackets = map ceiling packets
 print roundedPackets

It is interesting that the problem is solved by similar methods as problem 1 – method

close to the imperative programming, logical programming, and to the functional style-based
method.

6. Analog watch
Calculate the angle between two arrows of a clock by knowing the coordinates of the

hour’s arrow and the minute’s arrow. The beginning of the coordinate system is in the centre
of the clock-face.

Solution:
https://github.com/msmfenn/FunctionalProgramming/blob/main/Task%206.%20Analog%20
watch.hs shorturl.at/ixNQ2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

main = do
 let a = [0.707, 0.707] --sqrt(2)/2 45 degree
 let b = [-2, 4 * sqrt 3 / 2] -- 120 degree
 let abScalar = sum (zipWith (*) a b)

 let aLen = sqrt (sum (zipWith (*) a a))
 -- let aLen = sqrt(foldl (+) 0 (zipWith(*) a a))-- alternatively
 let bLen = sqrt (sum (zipWith (*) b b))
 -- let aLen = sqrt(foldl (+) 0 (zipWith(*) b b))-- alternatively
 let cosAngle = abScalar / (aLen * bLen)

 let angle = round (acos cosAngle / pi * 180)
 print angle

In this problem the students took advantage of the list processing in FPS. The
solution is short and shows the power of FPS in applying mathematical formulas.

Discussion
The research shows that the usage of comparative analysis between the different

styles of programming leads to mastering the programming paradigms and develops

40

Muharem Mollov, Petar Petrov

higher level of algorithmical thinking in the students. The proposed approach takes
into account the curriculum – both as duration in academic hours and as a sequence
of topics. If the sequence of topics is changed, the comparative analysis may be
applied a different order.

Regardless of the order, the comparative learning of the paradigms helps to
achieve higher level of competency. The learning of the different paradigms in a
connected way provides added value in which the Whole is superior to the sum of
the Parts.

Of course, if they are more academic hours for learning the FPS module, the
practical approach should not be ignored. Grounds for such hypothesis are found
in the achievements shown by the students in the “Embedded systems” and the
“Operating systems” module (Mollov 2020) where similar approaches were used.

Conclusion
The research results lead to the following conclusions:
1. The procedural style of programming becomes primary way of thinking and

the students have hard time with getting to think in terms of FPS.
2. The proposed approach helps to overcome these peculiarities. The result is

that students use different approaches for solving FPS-based problems.
3. By the proposed approach the students develop effectively their competencies,

related to FPS.
According to the requirements of Unit №10 of the learning outcomes part of

NES, the solutions of the problems provided by the students show that they have
the needed knowledge, skills and are capable to offer optimal solutions based on
FPS. 70% of the students who solved the practical problems have chosen a proper
data structure and used proper functions in Haskell.

The students passed successfully their exams on the FP module.
FPS a challenge for the students. They feel more comfortable with the procedur-

al style and it is needed to use different methodologies to ease the students. It could
be concluded that: The suggested approach helps to develop FPS, offers opportu-
nity to compare the advantages and the disadvantages of the different paradigms,
and develops the ability to choose the proper tools for solving different problems
related to software engineering.

Acknowledgement. The authors thank Dr. Ivaylo Staribratov, Assoc. Prof. from
Plovdiv University (Bulgaria) for the methodological help regarding the creation of
this paper and the research conduction.

41

Developing Problem Solving...

NOTES
1. ORDINANCE № 1 of 15.01.2018 for acquiring a qualification in the profession

“Applied Programmer” https://www.mon.bg/upload/14210/dos_481030.pdf
[Last Visited, 05.08.2020].

2. Ministry of Education and Science, National program “IT Career Training”
Portal for e-Training in the specialty “Applied Programmer”, https://www.mon.
bg/upload/19218/19RH172pr6-IT-kariera.pdf [Last Visited, 05.08.2020].

3. National program “IT Career Training” Portal for e-Training in the specialty “Applied
Programmer” https://it-kariera.mon.bg/e-learning/ [Last Visited, 05.08.2020].

4. European e-Competence Framework, https://www.ecompetences.eu/e-cf-
overview Publisher: Publications Office of the European Union ISBN: 978-
92-79-68006-9 (pdf),978-92-79-68005-2 (print),978-92-79-74173-9 (ePub)
ISSN: 1831-9424 (online),1018-5593 (print) DOI: 10.2760/38842 (online)
10.2760/836968 (print) 10.2760/00963 (ePub) [Last Visited, 05.08.2020].

5. The European Qualifications Framework for Lifelong Learning (EQF),
http://relaunch.ecompetences.eu/wp-content/uploads/2013/11/EQF_
broch_2008_en.pdf.

6. The digital competence framework for citizens with eight proficiency levels and
examples of use (DigComp 2.1), https://op.europa.eu/bg/publication-detail/-/
publication/3c5e7879-308f-11e7-9412-01aa75ed71a1/language-en [Last
Visited, 05.08.2020].

7. National competence assessment system MyCompetence https://mycompetence.
bg Last Visited, 05.08.2020].

8. Strategic requirements of the software industry for education system reform
https://www.basscom.org/RapidASPEditor/MyUploadDocs/Software-Industry-
Requirements-for-Educational-Ref.pdf [Last Visited, 05.08.2020].

9. Zinoviev, Anton. 2018. Logichesko programirane, http://logic.fmi.uni-sofia.bg/
zinoviev/lp/lp-20190713.pdf [Last visited 05.08.2020].

10. Philosophæ doctor thesis Hoessen Benoît, Solving the Boolean satisfiability
problem using the parallel paradigm, http://www.theses.fr/2014ARTO0406/
document [Last visited 30.08.2020].

REFERENCES
ACHTEN, P., 2008. Teaching functional programming with soccer-fun,

Soccer-FunArticle, Available from: doi: 10.1145/1411260.1411270.
BANCHEV, B., 2017. Rolyata na ezika v uvodnoto obuchenie po

programirane, X Natsionalna konferentsia „Obrazovanieto i
izsledvaniyata v informatsionnoto obshtestvo”, 21 [In Bulgarian].

BIRD, R., 1998. Introduction to Functional Programming using Haskell.
Prentice Hall, New York.

42

Muharem Mollov, Petar Petrov

CHATTOPADHYAY, A., QUIGLEY, E., HART, R. & PETTY, S., 2018.
A BERO CLF Themed Nifty Middle School Module: Teach Functional
Programming Using Music and Generate Interest in Coding and
Robotics, 98 – 103. Available from: doi. 10.1145/3241815.3241861.

DAVIE, A., 1992. Introduction to Functional Programming System Using
Haskell. Cambridge University Press.

DIACONU, A., 2020. Learning functional programs with function
invention and reuse Teaching Functional Programming with Soccer-Fun
Peter Achten arXiv: 2011.08881 v1 [cs.PL] 17 Nov 2020 Honour School
of Computer Science Trinity.

EGI, S. & NISHIWAKI, Y., 2020. Functional Programming in Pattern-
Match-Oriented Programming Style, The Art, Science, and Engineering
of Programming, Published February 17, 2020, Available from: doi:
10.22152/programming-journal.org/2020/4/7 © The Art, Science, 4(3),
2020, article 7; 32.

EÉN, N. & SÖRENSSON, N., 2006. Translating pseudo-boolean constraints
into SAT. Journal on Satisfiability, Boolean Modeling and Computation,
2(1 – 4), 1 – 26.

FANSLER, M., 2015. A Multimedia Library for Teaching Functional
Programming Concepts, Available from: doi. 10.13140/
RG.2.1.4000.7529.

HANUS, M., 1992, 1997. Teaching Functional and Logic Programming
with a Single Computation Model, Proc. Ninth International Symposium
on Programming Languages, Implementations, Logics, and Programs
(PLILP’97), Southampton, UK. Springer LNCS, 335–350.

HANUS M., HERBERT, K. & MORENO-NAVARRO, J., 1995. Curry: A
Truly Functional Logic Language. Proceedings of ILPS’95 Workshop
on Visions for the Future of Logic Programmming, Portland, Oregon,
United States, 95 – 107.

HANUS, M., 2007. Multi-paradigm Declarative Languages. Proceedings of
the 23rd International Conference on Logic Programming (ICLP 2007),
Porto, Portugal. Edited by Verónica Dahl and Ilkka Niemelä. 4670.
LNCS. Springer, 2007, 45–75. ISBN: 978-3-540-74610-2. Available
from: doi. 10.1007/978-3-540-74610-2_5.

HUDAK P., 1989. Conception, evolution, and application of functional
programming languages. ACM Computing Surveys, 21(3): 359 – 411.

HUDAK P., PETERSON, J. & FASEL, J., 1999. A Gentle Introduction to
Haskell 98.

HUGHES, J., 1989. Why Functional Programming Matters, Computer
Journal, 32(2), 98 – 107. https://www.cs.kent.ac.uk/people/staff/dat/
miranda/whyfp90.pdf [Last Visited, 30.5.2021].

43

Developing Problem Solving...

JOOSTEN, S., VAN DEN BERG, K. & VAN DER HOEVEN, G., 1993.
Teaching Functional Programming to First-Year Students Article in
Journal of Functional Programming, Available from: doi. 10.1017/
S0956796800000599 Source: CiteSeer.

KRISTENSEN, J.T. & HANSEN, M., 2001. Teaching object-oriented
programming on top of functional programming, Proceedings –
Frontiers in Education Conference 1: TID – 15 – 20, 1, Available from:
doi. 10.1109/FIE.2001.963848.

MCNAMARA, B. & SMARAGDAKIS, Y., 2004. Functional Programming
with the FC++ Library. Journal of Functional Programming. 14, 429 – 472.
Available from: doi. 10.1017/S0956796803004969.

MOLLOV, M. & STOITSOV, G., 2020. Development of STEM Competencies
to the Profession “Applied Programmer” in a Virtual Environment,
Anniversary International Scientific Conference “Synergetics and
Reflection in Mathematics Education”, 16 – 18 October 2020, Pamporovo,
Bulgaria, 285–292, Plovdiv: University press, ISBN: 978-619-202-595-3.

POOLE, M., 2019. A Block Design for Introductory Functional
Programming in Haskell. 31-35. 10.1109/BB48857.2019.8941214.

STARIBRATOV, I., 2020. Alternativen nachin za profesionalno
obrazovanie. Vocational education 22.2: 173 – 178.

TEODOSIEV, T.K., 2006. Problemi na obuchenieto po programirane.
Sbornik dokladi na Natsionalnata konferentsiya “Obrazovanieto v
informatsionnoto obshtestvo”, Plovdiv, oktomvri, 2006 g., URI: http://
hdl.handle.net/10525/1494, ISBN: 10:954-8986-22-1, 13:978-954-
8986-22-9 [In Bulgarian].

TEODOSIEV, T.K., 2010. Stilat na programata kato sredstvo za izbyagvane
na greshki. Sbornik dokladi na Natsionalna konferentsia „Obrazovanieto
v informatsionnoto obshtestvo”, Plovdiv, ARIO, 27-28 may 2010, 87-94,
URI: http://hdl.handle.net/10525/1383, ISSN: 1314-0752 [In Bulgarian].

TEODOSIEV, T.K., 2011. Stil na programirane v obuchenieto, Sbornik
dokladi na Natsionalna konferentsiya “Obrazovanieto v informatsionnoto
obshtestvo”, Plovdiv, ARIO, 26-27 may 2011, 073-079, URI: http://hdl.
handle.net/10525/1524, ISSN: 1314-0752 [In Bulgarian].

TODOROVA, M., 2010, Ezitsi za funktsionalno i logichesko programirane.
Sofia: Siela, ISBN: 978-954-28-0828-2 [In Bulgarian].

THOMPSON, S., 1997. A Problem Solving Approach in Teaching
Functional Programming.

THOMPSON S., 1993. Formulating Haskell. Launchbury J., Sansom
P. (eds), Functional Programming, Glasgow 1992. Workshops in
Computing. Springer, London. https://doi.org/10.1007/978-1-4471-
3215-8_23.

44

Muharem Mollov, Petar Petrov

 Muharem Mollov, PhD student
WoS 39991269 (Author Record Id)
ORCID ID: 0000-0003-0171-4462

https://www.researchgate.net/profile/Muharem-Mollov
Faculty of Mathematics and informatics

“Paisii Hilendarski” University of Plovdiv
 236, Bulgaria Blvd.

Plovdiv, Bulgaria
E-mail: muharem.mollov@uni-plovdiv.bg

 Petar Petrov, PhD student
ORCID ID: 0000-0002-8344-1578
“Prof. Assen Zlatarov” University

1, Prof. Yakim Yakimov Blvd.
Burgas, Bulgaria

 E-mail: peshopbs2@gmail.com

