
45

Математика 	 Volume 65,	 Mathematics
и информатика 	 Number 1, 2022	 and Informatics

INNOVATIVE PROPOSALS FOR DATABASE
STORAGE AND MANAGEMENT

Yulian Ivanov Petkov, PhD student,
Dr. Alexandre Ivanov Chikalanov, Assoc. Prof.

University of Library Studies and Information Technologies – Sofia (Bulgaria)

Abstract. At present, the problem of storing large data sets as a source of artificial
intelligence acquires a geopolitical and strategic character. The most well-known and
used type of databases so far are the relational (SQL databases) and nonrelational
(NoSQL databases. The both approaches have some principle problems, which are
described below. That publication presents two original approaches to overcoming
some of these shortcomings. First one is Object-oriented model for storing data in
a relational database. The second is Storage of non-relational data in a relational
database according to previously freely created by the user models. Presented
models were used as base for software development of more than ten middle and
large size national and European scientific and industrial projects.

Keywords: relational; SQL; non-relational; NoSQL; object-oriented model

Introduction
The most well-known and used type of database so far is the relational

(SQL database). The other type of database that uses a non-relational data model is
called NoSQL (non SQL / Not only SQL).

SQL databases are widely used – from small amounts of information, for example
from a two-page website to large web or mobile applications, blogs, online stores
and more. The most famous ready-made content management systems (CMS) sup-
port and use relational databases - WordPress, Joomla, Drupal, Magento and others.
However, fewer are those that support NoSQL databases (such as Drupal) (Thein
and Thwin 2019). A major problem with relational databases is that the presence of
NULL values cannot be avoided, which in some cases can reach a significant per-
centage of the total number of elements. Another problem with relational databases is
the difference between the relational and object-oriented data modeling approaches.

NoSQL databases are the common name for various database technologies cre-
ated for modern applications and the vast amount of information they work with.
NoSQL databases solve various SQL constraints for:

– easy scalability on server clusters (horizontal dialing);

https://doi.org/10.53656/math2022-1-6-inn Educational Technologies
Образователни технологии

46

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

– support for different types of data structures;
– use in development with flexible methodologies (agile development).
In this publication, the authors propose two innovative approaches for data storage

and management for facilitating database related web portals. Some NoSQL databas-
es may not fully comply with the ACID transaction model. Some NoSQL databases
may also not support join operations used in relational databases. The proposed two
innovative logical models for modeling of large data sets in general solve the above
listed problems(Sharma and Meenu 2012), (Stonebraker 2010), (Ziqi Li 2018).

Object-oriented model for storing data in a relational database. That model is
based on the so-called root tree of discrete mathematics, strictly following the rules of
object-oriented programming. The idea of the model is that a table stores data describ-
ing the abstract model of objects and the relationships between them, as well as the
type of objects. Each object is represented as an instance of a class. The names of the
objects must be unique along the entire branch of tree. A separate table is created for
each main class, and the inheriting instances use the table of the parent class. Each class
can contain any number of attributes of freely selected types that the database supports.
The description of attributes is stored in a separate table. The proposed model supports
three types of classes, but everyone is free to use them partially or to enrich and develop
models with new types, at their discretion. The relations between classes are:

– Has an empty relation – his successors do not include his attributes. Marked as „◊“.
– Has a full relationship – his successors include all attributes. Marked as „♦“.
– There is a relationship – includes brothers of type „◊“ and „♦“. They also in-

herit the attributes of their fathers. Marked as „∆“.
Fig. 1 shows a graphical presentation of above described relations. The presentation

is from a full scaled working industrial project for management of thermo curtains.

Figure 1. Graphical presentation of part of classes involved in an application for
thermo curtains management

47

Innovative Proposals for Database...

Descrition of table forming the model follows:
(1) category – Basic table of classes. Contains all class information, as identifi-

er, position in tables tree, relations to neighboring tables in that tree etc.
(2) attribute – Basic table for class attributes. Contains all information about

an attribute, attribute identifier, class identifier to which it belongs, is that attribute
mandatory or optional, attribute name etc.

Storage of non-relational data in a relational database according to previous-
ly freely created by the user models. The model allows the storage of complex data
structures, as well as complex structures of structures or their projections, as the data
is stored in a Relational database. Data structures can be considered as forms. The
abstract logical model described in this way is represented in a relational scheme, as
only the attributes that have value, such as rows in the table, are stored in the database
and thus lead to optimization in their storage. The type of attributes can be arbitrarily
chosen from the possible ones, which we will consider below:

(1) Text field – a field of type Textarea for storing multi-line text data;
(2) Hidden field – field of type Hidden for storage of official data invisible in

the forms;
(3) File – File type field for storing files. Only the name and the actual path to

the storage location of the information carrier are stored in the database;
(4) Image – Image type field for storing images. Only the name and the actual

path to the storage location of the information carrier are stored in the database;
(5) Date – Date field for storing data in date format (YYYY-MM-DD);
(6) Time – field of type type for storing data in hour format (HH: mm);
(7) Date and time – field of type DateTime for data storage in date and time

format (YYYY-MM-DD HH: mm);
(8) Check box – a field of type Checkbox for storing selected from the list of

possible choices;
(9) Radio – field of type Radio for storage of data for single selection from the

list of possible choices;
(10) Select – a field of type Select for storing data from a list. Both single selec-

tion and multiple selection from the list of possible choices are supported.
Each attribute can be assigned a default value as well as a comment field. Attrib-

ute names must be unique throughout the database. Bookmark, Radio, and Selection
attributes can also use so-called external values selected from standard application
tables. There can be multiple attributes of the same type in the database. The data is
stored in the database by means of forms freely created by the user (models) with
attributes selected by him. This contributes to the ability to create arbitrary forms
without the need to add program code and create new tables in the database. The
forms are subject to grouping by type. The type of forms is a classifier. For example,
Industry, Sports, Finance, etc. Each type can contain many categories in itself,
which appear as its specialization. For example, for Sports, the category includes

48

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

Football, Basketball and others.
The data is fully indexed. Data items are extracted through complex queries. It

is permissible to build complex relationships between different forms for statistical
analysis or other purposes without the need to create SQL queries.

To better explain the model, we will start with a complete description of the
tables that make it up:

(1) tool – Basic table for attributes. Contains all information about an attribute,
such as tool_id (unique automatically generated number), name (unique attribute
name), external (indicates whether an external table is used), value (default value),
type (attribute type from described above) and status (attribute status);

(2) tool_value – Additional table with values for the attributes of type “Book-
mark”, “Radio” and “Selection”. Contains all value information, such as tool_val-
ue_id (unique automatically generated number), tool_id (attribute relation), name
(unique value name), value (default value), sort_order (visualization order) , status;

(3) type – Basic table for types. Contains all information about a type, such
as type_id (unique automatically generated number), name (unique type name),
sort_order (order of visualization), status (type status);

4) category – Basic table for categories. Contains all information about a cate-
gory, such as category_id (unique automatically generated number), type_id (infor-
mation about which type it belongs to), name (unique category name), sort_order
(order of visualization), status (status of category);

5) repetend – Basic table for cyclically recurring periods. Contains all infor-
mation about them, such as repetend_id (unique automatically generated number),
name (unique name of the period), value (value for the period), sort_order (order of
visualization), status (status of the period);

6) tab – Basic table for sections. Contains all information about a section, such
as tab_id (unique automatically generated number), name (unique section name),
status (section status);

(7) form – Basic table for forms. Contains all information about a given form,
such as form_id (unique automatically generated number), type_id (information
about which type it belongs to), category_id (information about which category
it belongs to), repetend_id (information about this to which period it belongs to),
name (unique name of the form), tab_order (order of tabs when formatting for
text attributes), max_value (indicates the maximum value for the attributes in it),
sort_order (order of order when visualizing the form), status (status of the form);

(8) form_tab – Additional table for forms. Contains all the information about
the sections in a given form, such as form_id (information about which form it be-
longs to), tab_id (information about which section it includes), multy (information
about whether the section includes multiple pages), col_num (information about
this how many columns form the partition when visualizing the shape);

(9) form_value – Additional table for forms. Contains all information about

49

Innovative Proposals for Database...

the attributes in a given form, such as form_id (information about which form it
belongs to), tab_id (information about which section it belongs to), tool_id (in-
formation about which attributes it includes), position (information about which
column it belongs to), numrows (indicates the number of rows for text attributes
when formatting for whether the attribute allows comments (max_value) (specifies
the maximum value for the attributes in it), sort_order (sort order in form preview),
sort_order (sort order in form preview);

(10) form_data – Basic table for records. Contains all information about a re-
cord, such as form_data_id (unique automatically generated number), form_id (in-
formation about which form it belongs to), customer_id (information about which
user added the record), for_customer_id (information about which user refers to-re-
cord), pscore (indicates the value of the selected attributes in the record), date_add-
ed (indicates the time of adding the record), status (status of the record);

(11) form_data_list – Additional table for records. Contains all information
about a page in a record, such as form_data_id (information about which record it
belongs to), tab_id (information about which section it belongs to), body_id (infor-
mation about page number), customer_id (information about which user has added
the page), text (page title), date_added (indicates the time of adding the page);

(12) form_data_value – Additional table for records. Contains all information
about the attributes with a value in a record, such as form_data_id (information
about which record it belongs to), body_id (information about which page it be-
longs to), tool_id (attribute number information), tool_value_id (information about
attribute value number), value (data according to the attribute type);

13) statistics – Basic table of forms for statistical analysis. Contains all infor-
mation about them, such as statistics_id (unique automatically generated number),
name (unique name of the statistical analysis), sort_order (order of visualization),
status (status of the statistical analysis);

14) statistics_value – Additional table for statistical analysis. Contains all infor-
mation about the sections of the statistical analysis, such as statistics_value_id (unique
automatically generated number), statistics_id (information about which statistical
analysis it belongs to), name (unique name of the section of the statistical analysis),
value_avg (information for average section value (value), value_max (information
about the maximum value of the section), sort_order (order of visualization);

15) statistics_to_tool – Additional table for statistical analysis. Contains all in-
formation about the attributes forming sections, such as statistics_value_id (infor-
mation about which section it belongs to), statistics_id (information about which
statistical analysis it belongs to), tool_id (information about attribute number);For
greater clarity, we will illustrate the principle of operation in the following exam-
ple, considering the possible variants between Relational Databases, Non-Relation-
al Databases and the Proposed Model.

Suppose we have 30 custom forms with 50 attributes, some of which contain

50

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

multiple-choice attributes.
Non-relational database
Contains one table in which the data is recorded and one row for recording.

Disadvantages – each record must contain a complete description of the format to
which it belongs and a complete set of attributes to maintain data integrity. Also,
when searching, each record must be uncompressed and checked, as indexing and
relation are not supported.

Recording example.
{ID:1, form:1, attr1:{aID:11, aID:4, aID:8}, attr2:“...“, attr3:“...“,,

attr50:“...“}

Relational databases
Contains 30 tables with 51 columns, the first being for the unique record ID. Each

table has an additional table with 3 columns, due to the multiple-choice attributes.
The first column contains the record ID, the second contains the attribute ID, and
the third contains the ID of the selected value. Easy and fast search, but only when it
comes to searching in one table. The union and the section is a complex case.

Pre-freely created by the user model
First we create the attributes we need, and if there are attributes that are repeti-

tive in type and value, we have only one instance. For example, in 10 of the forms
there is the attribute “State”, we create it once and use it in the 10 forms. Then we
add values to the “Bookmark”, “Radio” and “Selection” attributes. We create the
types we need and the categories belonging to the types. We create sections and
cyclically repeating periods as needed. We can now proceed to the description of
the abstract model.

We create the first form, giving it a name, then add the sections and define their
arrangement. We specify for each section how many columns it has and whether it
supports multiple pages (instances). We add to each column the necessary attributes
and their properties in the appropriate row.

Once the model is fully described, we can retrieve data and store it in the data-
base.

This action is repeated until we describe the other 29 forms.
As can be seen from the description, we use only tables 1) to 12) to describe all

30 tables and 50 attributes. The same goes for several thousand tables with several
hundred attributes.

Let‘s look now at how the data that enters the database is actually stored. For
each incoming record, a row is added in Table 10). In Table 11) rows are added
according to the number of sections and pages that contain attributes with value. In
Table 12), only the attributes that contain a value are added.

In conclusion, we can say that the main advantage over non-relational databas-

51

Innovative Proposals for Database...

es is the ability to search without having to unpack the records, which requires a
large amount of memory and on the other hand the speed of queries, as the fields
are indexed. Compared to relational databases, the main advantage is that it is not
necessary to write complex search queries when merging multiple tables (where
merging is sometimes even impossible). The number of tables and the number of
columns in them is also not insignificant.

Conclusion
After the short presentation and description of mentioned two innovative mod-

els for data storage and management, as well as the examples attached to them in
this chapter, we can draw the following conclusions:

– The developed object model for data presentation realizes on a logical level
the main relations of the Object-Oriented Programming. These relationships are
realized by avoiding the use of object-oriented databases, which were experiment-
ed at the beginning of the millennium, but were rejected by the industry due to
the complexity of their use and maintenance. The proposed logical model can be
physically implemented through all Relational databases. An intuitive visual tool
for managing objects of user classes, which are included in the above-described
relations, has also been developed.

– The developed model for presenting non-relational data combines the good
practices of Relational Databases and Non-Relational Databases, while omitting
some of their shortcomings. The model allows the storage of complex data struc-
tures, as well as complex structures of structures or their projections, as the data is
stored in a Relational database. An architecture has also been developed for a rapid
transition from a visual interface to a data warehouse and vice versa. The proposed
model eliminates data with NULL value, which increases the capacity per unit of
long-term memory, as well as the speed of data access.

A short list or European projects implemented on the base of proposed models
includes:

(1) H2020 BOWI: Boosting Digital Innovation in Europe (bowi-network.eu),
AgeWare Project.

(2) EIT Climate KIC TRANSFORM Project: Smart Climate KIC City Trans-
formation.

(3)H2020 ACTIVEAGE: ACTivating InnoVative IoT smart living environments
for AGEing well (SofiaPilot), (www.activageproject.eu).

(4) H2020 Cross4Health project (cross4health.eu).
(5) FP7 ICT “Experiential Living Labs for the Internet of Things” – ELLIOT.

52

Yulian Ivanov Petkov, Alexandre Ivanov Chikalanov

REFERENCES
SHARMA, V. & MEENU, D., 2012. SQL and NoSQL Database. 2012.

International Journal of Advanced Research in Computer Science and
Software Engineering. 2(8), ISSN: 2277 128X.

STONEBRAKER, M., 2010. SQL databases v. NoSQL databases. Computer
Science Commun. ACM.

THEIN, M. & THWIN, M., 2019 Relational Databases. Available from:
doi.org/10.2307/j.ctvc77jrc.15

ZIQI LI, NoSQL Databases 2018. Available from: DOI: 10.22224/
gistbok/2018.2.4.

 Yulian Ivanov Petkov, PhD student
University of Library Studies and Information Technologies

Sofia, Bulgaria
E-mail forexformat@abv.bg

 Dr. Alexandre Ivanov Chikalanov, Assoc. Prof.
ORCID ID: 0000-0002-4281-1376

University of Library Studies and Information Technologies
Sofia, Bulgaria

E-mail a.chikalanov@unbit.bg

