
18

Математика Volume 67, Mathematics
и информатика Number 1, 2024 and Informatics

https://doi.org/10.53656/math2024-1-2-ana Science in Education
Научно-методически статии

AN APPROACH AND A TOOL
FOR EUCLIDEAN GEOMETRY

Dr. Boyko Bantchev, Assoc. Prof.
Institute of Mathematics and Informatics — Bulgarian Academy of Sciences

Abstract. Explorers, teachers, and students of geometry of all kinds are
now used to applying computer programs in their work. Software of var-
ious sorts is available for that. Geometry itself, though of venerable age,
has proven to be open to new views and methods. After briefly surveying
the known geometry software, we present a double novelty: a vector-based
approach to doing geometry, and a respective program tool, aiding in geo-
metric computing and construction, and suitable for producing high quality
drawings.

Keywords: vector algebra; Euclidean geometry; geometry software

1. Software for Euclidean geometry
Several kinds of computer programs provide means for constructing geo-

metric objects and performing geometric operations on them.
Mathematical computing environments, such as Maple, MATLAB, or

Mathematica, usually provide packages for exploring Euclidean geometry.
Typically, a geometry package is a library of procedures for constructing
fundamental figures — lines, segments, circles, arcs, etc., and ones for per-
forming basic computations on such objects, e.g. finding points of intersec-
tion, angle bisectors, altitudes, tangent lines, and many others. The scope
and complexity of the problems that such libraries solve may vary hugely. It
is not unusual for a library to provide solutions to computational geometry
problems like constructing Delaunay triangulations and Voronoi diagrams.

In the author’s experience, the quality of these solutions also varies. One
example is Maple’s procedure for solving the Apollonius problem, which
only tackles a limited version of the problem, and even then accepts only
some of the possible configurations of the input objects, and can still produce
incorrect answers.

A small group of programs is dedicated to automated proving of geom-
etry theorems, or providing assistance in finding proofs. Some provers are

19

An Approach and a Tool...

autonomous programs, others combine reasoning capabilities with interac-
tive geometric model building and editing. Given a description of a geomet-
ric scene, they can draw it, find locuses, perform animations, and prove or
refute propositions about the participating objects. They usually can also ex-
port the drawing, reasoning, or both to LATEX for mathematical publication
purposes.

An example of a geometric prover is GCLC.1 Its input is a procedural de-
scription of the respective scene in a specially designed language with com-
mands for direct and dependent construction, point transforms, simple cal-
culations, drawing, annotating, and setting visual attributes. Some provers
combine reasoning capabilities with interactive geometric model building
and editing.

Yet another kind of programs is concerned solely with constructing geo-
metric objects and scenes of them, finding locuses and animating, based on
a description in a specific language. A popular example is ΕΥΚΛΕΙΔΗΣ,2
whose language is much smaller than e.g. GCLC’s, but is nevertheless better
structured and more convenient in use.

An important note to make is that, in whatever geometric system, featur-
ing a written construction language is a major advantage. The best way of
presenting and communicating — both to humans and to programs — the
entire content and the very meaning of a drawing is to write down, in a sys-
tematically organized form, a description of the set of actions that produce
the drawing’s parts, along with the relations between them.

For many years now, researchers, teachers, students and others engaged
in mathematical exploration manifest a steady interest in the so called dy-
namic geometry software — computer programs for interactive creation and
manipulation of geometric constructions. Such programs build a geometric
model of objects, such as points, lines, circles, etc., together with the depen-
dencies that may relate the objects to each other. The user can manipulate
the model by moving some of its parts using a mouse or similar device, and
the program accordingly repositions the other parts, so that the constraints
are preserved.

Rather than just create images, a drawing in dynamic geometry program
is a visualisation of an abstract model of geometric nature and, importantly,
provides a visual interface for its manipulation. These programs vary signifi-
cantly in their drawing capabilities, but they are all centred around geometric
modelling. A geometric model may be used to visualize complex geometric
constructions, to build and test geometric hypotheses, or to create geometri-
cally precise illustrations to be used in printed documents or on the Web.

Model building in most such systems starts with creating a set of indepen-
dent, freely existing objects — usually points, and proceeds by constructing

20

Boyko Banchev

ones that are dependent on the former through being geometrically related to
them. These programs are mostly used for planar geometry, but a number of
them allow for spatial constructions as well.

Some of the widely used dynamic geometry programs are The Geometer’s
Sketchpad, Cabri, GeoGebra, C.a.R., Cinderella, Kig, and MathKit (a pro-
gram whose original name is in Russian: Математический конструктор).

An interesting variation of the dynamic geometry approach is presented by
the Geometry Expressions program. Rather than being construction-based
— proceeding from free to dependent objects, and further to ones that de-
pend on the dependent — the geometry models created by this program are
constraint-based. A model is specified by drawing a sketch — an inaccurate
representation — and then attaching symbolic constraints and dependencies
to it. In order to rebuild the drawing according to the constraints, the pro-
gram internally creates a construction sequence for the model and executes
it, supplying sample numerical values for the free variables remaining in the
definition.

Some of the dynamic geometry systems offer a construction language:
each command to the system can be entered in a text form, along with its
arguments. In addition to the general note we made above on the desirability
of a construction language, with respect to systems with a graphical user
interface there are more considerations in favour of such a language. One is
that, if commands can be nested, this can help avoid cluttering the geometric
model with de facto unnecessary names. For example, a command such as

line(intersect(𝑎𝑎𝑎 𝑎𝑎), intersect(𝑐𝑐𝑎 𝑐𝑐))
would construct a line through the points of intersection of lines 𝑎𝑎 and 𝑎𝑎, and
𝑐𝑐 and 𝑐𝑐, without having to name these points.

Even more importantly, while providing all the functionality of a system
only through a graphical user interface is either impossible or exceedingly
cumbersome, a construction language can comprehensively represent com-
mand sets of any amount and complexity.

It also helps a lot if one can input at once a batch of commands, designed
and written in advance, and possibly do that more than once in the course of
a working session. Otherwise, the usefulness of the command language is
limited.

A geometry system can go together with a language that not only handles
construction but has means for general programming, such as conditional
and repeated execution and user-defined procedures. The language is then
called a scripting language, and in fact makes the system programmable. The
specific ways in which scripts can be used and interact with each other add
to the usability of a programmable system.

21

An Approach and a Tool...

GeoGebra is an example of a geometric system, featuring only a con-
struction language: a set of commands for object construction, assigning at-
tributes, setting modes and some others. There is only a limited way for
storing and executing commands in groups. Cinderella, on the other hand,
sports full programmability through its language CindyScript.3

Finally, ability for program-assisted geometric exploration can also be
provided in the form of a program library, as is the case with JSXgraph.4
It is a set of procedures and conventions for using them that constitute a
platform for geometric programming in a browser environment. Interactive
programs, written in the JavaScript language and executing in a browser, can
make use of JSXgraph for solving geometric problems. Besides visualizing
a geometric scene, the library supports dynamic geometry by distinguishing
between free and dependent objects. Graphical means for interacting with a
geometric scene are built-in in the visual box that represents the scene, and
there can be as many such boxes as necessary, each holding a ‘live’ scene
with draggable objects.

2. What is the proper calculation language for geometry?
To the extent that a geometry system supports calculations that can pro-

duce geometric figures and operate on them, they are usually performed on
coordinates, most often Cartesian ones. Vectors and complex numbers may
also be available. These are the means of expression that we know mostly
from analytic geometry. The same tools are in use in hand calculations and
in computer-performed computations within geometry programs.

However, having to express all properties and relations of geometric ob-
jects in terms of coordinates is too often too tedious, and one can easily end
up with a barely readable mesh of equations, hard to comprehend and main-
tain. Coordinates have no geometric meaning themselves, and the same is
true of many arithmetic expressions with coordinates that one has to deal
with. Most importantly, if geometric objects are represented in coordinates,
then what one works with is not these objects but, rather, a tightly entan-
gled mix of them and the coordinate system with its own peculiarities. And
it may be far from obvious what geometric object, if any, is represented by
a certain expression in coordinates, and what of its properties, observable
through this expression, are really its own, and which ones can be attributed
to its representation in coordinates.

Things that we might have expected to be expressed simply, in coordinates
may turn to be grotesquely large and complicated. For example, how is one
to recognize

22

Boyko Banchev

((𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐴𝐴) (𝑥𝑥𝐷𝐷 𝑦𝑦𝐶𝐶 − 𝑥𝑥𝐶𝐶 𝑦𝑦𝐷𝐷) − (𝑥𝑥𝐷𝐷 − 𝑥𝑥𝐶𝐶) (𝑥𝑥𝐵𝐵 𝑦𝑦𝐴𝐴 − 𝑥𝑥𝐴𝐴 𝑦𝑦𝐵𝐵)
(𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐴𝐴) (𝑦𝑦𝐶𝐶 − 𝑦𝑦𝐷𝐷) − (𝑥𝑥𝐷𝐷 − 𝑥𝑥𝐶𝐶) (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝐵𝐵)

,

(𝑥𝑥𝐵𝐵 𝑦𝑦𝐴𝐴 − 𝑥𝑥𝐴𝐴 𝑦𝑦𝐵𝐵) (𝑦𝑦𝐶𝐶 − 𝑦𝑦𝐷𝐷) − (𝑥𝑥𝐷𝐷 𝑦𝑦𝐶𝐶 − 𝑥𝑥𝐶𝐶 𝑦𝑦𝐷𝐷) (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝐵𝐵)
(𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐴𝐴) (𝑦𝑦𝐶𝐶 − 𝑦𝑦𝐷𝐷) − (𝑥𝑥𝐷𝐷 − 𝑥𝑥𝐶𝐶) (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝐵𝐵)

)

as the point of intersection of the lines 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶? Or, given the above,
how easy is it to ascertain that the point belongs to both lines? Or at least to
one of them? Surely a nasty heap of variables, yet this is what we obtain in
terms of coordinates, given those of 𝐴𝐴, 𝐴𝐴, 𝐶𝐶, and 𝐶𝐶.

For several reasons that we are not going to discuss here, complex num-
bers score no better as a practical tool of geometric calculations. The follow-
ing is the same point of intersection, all points being represented by complex
numbers:

(𝑐𝑐 ̄𝑑𝑑 − ̄𝑐𝑐𝑑𝑑)(𝑑𝑑 − 𝑑𝑑) − (𝑑𝑑�̄�𝑑 − ̄𝑑𝑑𝑑𝑑)(𝑑𝑑 − 𝑐𝑐)
(𝑑𝑑 − 𝑑𝑑)(̄𝑑𝑑 − ̄𝑐𝑐) − (�̄�𝑑 − ̄𝑑𝑑)(𝑑𝑑 − 𝑐𝑐)

⋅

Although to each point corresponds a single number, and not a pair of coor-
dinates, there are twenty (!) references of names in the above expression —
each name had to be used five times. This is hardly the dreamed language to
deal with calculations in geometry.

In the next section we make the point that vector algebra is a truly expres-
sive and practical tool for handling calculations in Euclidean geometry. We
specifically consider plane geometry. As it turns out, calculating with vec-
tors is remarkably simple and concise. To achieve this, to the well known
operations on vectors we only have to add two. They too have been known
since the very invention of vectors but were mostly neglected.

3. Planar vector algebra and geometry
Vectors were invented, or perhaps we should say discovered, because ge-

ometers and physicists using mathematical methods wanted to be able to as-
sign orientation to certain objects — e.g. segments, lines, planes and surfaces
in geometry. Perhaps because of the physicists, to whom the plane was of no
interest, more energy and enthusiasm was invested in the development of ori-
ented geometry in space. But then something strange happened. After much
of a heated debate in the second half of the 19-th century on the precise for-
malism and notation to be used in calculating with oriented objects in space,
when the version of Gibbs and Heaviside finally took over, its development
stagnated, and its use, in geometry at least, remained rudimentary. Mathe-
maticians were so fascinated by the application of matrices and determinants

23

An Approach and a Tool...

— also newly invented back then but essentially based on calculating with
coordinates — that they developed the habit of not relying on vectors as a
language of its own virtue, and only use them as a vehicle to get to matrices
and coordinates. In this respect, witness any textbook on analytic geometry.

As for the vector algebra in the plane, it was never properly developed,
although all necessary was in place for that. Correspondingly, the use of
vectors in planar geometry even today is next to non-existing (not the least
because of those many geometers who in fact oppose all forms of calculation,
favouring only synthetic reasoning).

Now let’s move on to how we use vectors. In the rest of this section we
aim to put together convincing evidence for the utility of the vector algebra
as a language for Euclidean geometry. All definitions and results that we re-
produce here are either well known at a college level (and easily recognizable
as such) or author’s own.

First of all, vectors can be added, subtracted, and multiplied by a num-
ber, these operations having the usual properties. (Algebraically speaking,
vectors form a vector space.)

Of two different and non-opposite directions in the plane, we say that one
of them precedes the other when, with respect to a line with the first direction,
the second direction points towards the left half-plane.

Since vectors are directed, the precedence relation applies to non-parallel,
non-zero vectors, too, and we write u≺v when u precedes v.

We define u×v to be the oriented area of the parallelogram built on (rep-
resentatives of) the vectors u and v as its sides. The oriented area is positive
when u≺v, negative when v≺u, and 0 when u‖v (i.e. when the parallelo-
gram is degenerate, including the case when any of u or v is 0).

Finally, we define u⊥ to be the vector the same length as u, whose direction
is at a right angle to that of u, and such that u≺u⊥. Also by definition, 0⊥ = 0.

We call u×v the area product of u and v, and u⊥ the ‘perp’ of u (fig. 1).
Clearly, × and ⊥ are specific to vectors in the plane. We purposely use × to
denote area product, as this operation has much in common with the vector
product of spatial vectors, denoted the same way.

u

v u×v

u

u⊥

Figure 1. Area product and ‘perp’

24

Boyko Banchev

Of course, we also use the scalar product of vectors, u⋅v, defined as known
from elsewhere. Note that, since u ⋅ v = u×v⊥, each of the area and scalar
products can be defined in terms of the other. The area product is more fun-
damental, though, because it does not rely on the notion of length (of e.g.
vector) — in fact, it can be defined purely algebraically, with no relation to
area or geometry at all.

The two products are complementary to each other in that, just as the
zeroness or the sign of u×v is an algebraic test for concurrency or precedence,
the zeroness or the sign of u⋅v is an algebraic test for perpendicularity, acute
or obtuse angle between directions.

Variants of the area product and the perp operation have been known for
about 180 years, but rarely, if at all, received due attention. For the usefulness
of the vector algebra in the plane, and for the breadth of its application to
geometry, these two operations are vital.

Some identities involving ⋅, ×, and ⊥ are (note that in sin(u,v) the angle
is oriented from u to v):

u ⋅ u = |u|2
u ⋅ v = v ⋅ u

(𝑘𝑘 u + 𝑘𝑘′ v) ⋅ w = 𝑘𝑘 (u ⋅ w) + 𝑘𝑘′(v ⋅ w)
u ⋅ v = |u||v| cos(u,v)

|u ⋅ v| ≤ |u||v|
(u⊥)⊥ = − u

(𝑘𝑘 u + 𝑘𝑘′ v)⊥ = 𝑘𝑘 u⊥ + 𝑘𝑘′ v⊥

u⊥ ⋅ v = −(u ⋅ v⊥)
u⊥ ⋅ v⊥ = u ⋅ v

u × v = −(v × u)
(𝑘𝑘 u + 𝑘𝑘′ v) × w = 𝑘𝑘 (u × w) + 𝑘𝑘′(v × w)

u × v = |u||v| sin(u,v)
|u × v| ≤ |u||v|
u⊥ × v = −(u × v⊥)

u⊥ × v⊥ = u × v
u × v = u⊥ ⋅ v

Many other identities hold as well, filling in the content of planar vec-
tor algebra and useful for obtaining further results. Here are several such

25

An Approach and a Tool...

identities, for any vectors a, b, c, and d in the plane:

(b × c) a + (c × a) b + (a × b) c = 0

(a × b)2 + (a ⋅ b)2 = a2 b2

(a × c) b2 = (a × b)(b ⋅ c) + (a ⋅ b)(b × c)
(a ⋅ c) b2 = (a ⋅ b)(b ⋅ c) − (a × b)(b × c)

(a × b)(c × d) = (a × c)(b × d) − (b × c)(a × d)
= (a ⋅ c)(b ⋅ d) − (b ⋅ c)(a ⋅ d)

Behind some such identities one can easily spot well known trigonometric
ones. But the vector identities are being established with no direct reference
to angles at all. As vectors possess direction, operations on vectors have
the inherent ability to perform various implicit computations with angles.
It is very characteristic of vector algebra that with it there is hardly a need
for trigonometry — the latter is simply superseded by the more general and
arguably more natural to geometry language of vectors.

Of particular importance is the following fact: if u×v ≠ 0 (i.e. u and v
are non-zero and non-parallel), any vector p admits a unique decomposition
along u and v (fig. 2), namely

p = p×v
u×v

u + u×p
u×v

v.

Specifically for v = u⊥:

p = (̂u ⋅ p) ̂u +(̂u×p) ̂u⊥.
(Here and elsewhere, ̂denotes a unit vector with the direction of a given
vector.)

u

v
p

Figure 2. Vector decomposition

It appears that a great number of vector-related and geometric results fol-
low directly from the decomposition formula.

26

Boyko Banchev

For example, the oriented distance of a point 𝑃𝑃 to a line passing through
a point 𝐴𝐴 and having the direction of a vector u is ̂u×AP — positive when
𝑃𝑃 is on the left of the line. The position vector of the projection of 𝑃𝑃 on the
line is A+(̂u ⋅AP) ̂u. We can read out both these from the two parts in which
AP decomposes along ̂u and ̂u⊥.

Furthermore, the equation

𝑠𝑠 p + 𝑡𝑡 p⊥ = u ,
can be solved for p, obtaining

p = 𝑠𝑠 u − 𝑡𝑡 u⊥

𝑠𝑠2 + 𝑡𝑡2 ⋅

Similarly, the solutions of

u × p = 𝑐𝑐 and u ⋅ p = 𝑐𝑐 (1)

are

p = 𝑠𝑠u + 𝑐𝑐
u2 u⊥ and p = 𝑠𝑠u⊥ + 𝑐𝑐

u2 u (2)

for any number 𝑠𝑠.
Solving two such equations simultaneously, we obtain a single vector.

Thus, the solution of e.g.

u × p = 𝑠𝑠 (3)
v × p = 𝑡𝑡

given u×v ≠ 0 is

p = 𝑠𝑠 v − 𝑡𝑡 u
u × v

⋅ (4)

An equation of any of the two kinds (1) admits an immediate interpretation
as an equation of a straight line if p is considered the position vector of a
variable point. The line is either parallel or perpendicular to u, depending
on whether the multiplication is × or ⋅. Correspondingly, any of (2) can be
seen as the parametric equation of this line. And solving a system of two
equations, each of the kind (1) or (2), is none else but finding the point of
intersection of the respective lines.

For example, if 𝐴𝐴 abd 𝐵𝐵 are two points, a point 𝑃𝑃 is of the line 𝐴𝐴𝐵𝐵 if and
only if

AB×AP = 0.
This is a remarkably simple equation of a line by two known points, as only

27

An Approach and a Tool...

a single algebraic operation is involved! By substituting AP = P−A and
AB = B−A the equation takes the form AB×P = −A×B, which is of the
kind (1). Given another line 𝐶𝐶𝐶𝐶 and proceeding similarly, we obtain a sys-
tem of the kind (3), wherefrom, applying (4), we obtain the position vector
of 𝐴𝐴𝐴𝐴 𝐴 𝐶𝐶𝐶𝐶:

P = (C×D)AB − (A×B) CD
AB × CD

⋅

Or, we could have kept the first equation in the form AB×AP = 0, trans-
formed the second one to CD×AP = CD×AC, and solved for AP:

AP = AC × AD
AB × CD

AB

(which also follows directly from the already found result for P above).
Thus we see that, by making use of the algebra of vectors, lines and any-

thing related to them can be expressed and worked out in terms of the points
and directions that define the lines. This applies to other geometric figures
as well.

If the notation [𝑃𝑃1𝑃𝑃2 … 𝑃𝑃𝑛𝑛] be adopted for twice the oriented area of the
polygon 𝑃𝑃1𝑃𝑃2 … 𝑃𝑃𝑛𝑛, many of the expressions involving × can be rephrased
in terms of oriented areas of polygons. This, too, is very much in the spirit of
how we apply vector algebra to geometry: vectors are a language and means,
not an end in itself.

For example, as AC×AD = [𝐴𝐴𝐶𝐶𝐶𝐶] and AB×CD = [𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶], the above
expression for AP obtains a form with only a minimal presence of vectors:

AP = [𝐴𝐴𝐶𝐶𝐶𝐶]
[𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶]

AB .

This form exhibits utmost simplicity, but the relation expressed in it is not
trivial, taking into account that 𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶 can be any quadrilateral, including
self-intersecting. It is rather unlikely that such a formula could have been
arrived at without using vector algebra. In our practice of calculating with
vectors, we have often encountered this phenomenon.

One use of having a general formula for finding points of intersection is to
find expressions of triangle centres in terms of vertices and sides. For exam-
ple, letting a = BC, b = CA, and c = AB in △𝐴𝐴𝐴𝐴𝐶𝐶, the altitude through,
say, 𝐴𝐴 has the equation a ⋅ AP = 0, or, equivalently, a⊥×AP = 0. The or-
thocentre 𝐻𝐻 then can be found as the point of intersection of any two of the
altitudes:

H = −((A⋅a) A + (B⋅b) B + (C⋅c) C)⊥

[𝐴𝐴𝐴𝐴𝐶𝐶]
,

28

Boyko Banchev

and AH = b ⋅ c
b×c

a⊥ also holds.

As an example related to a non-linear geometric figure, here is an equation
of the disk whose circumference passes through points 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶:

((CA⋅ CB) (PA×PB) − (CA×CB) (PA⋅ PB)) sign[𝐴𝐴𝐵𝐵𝐶𝐶𝐴 𝐴 𝐴𝐴
where 𝐴 is actually = or > for 𝑃𝑃 on or strictly inside the circumference.

Equations of many curves can also be expressed in a vector language. For
example, conics have the general equation

FP2 = ((𝑒𝑒𝑒𝑒)𝑒r𝑒 − 𝑒𝑒 (̂r ⋅ FP))2𝐴
where 𝑒𝑒, r, and 𝐹𝐹 determine the curve’s main characteristics, namely (see
fig. 3):

𝑒𝑒 eccentricity — effectively type (circle, ellipse, hyperbola, or para-
bola) and specific shape;

𝑒r𝑒 scale (focus-to-apex distance);
̂r orientation (of the axis, focus-to-apex);

𝐹𝐹 position (of the focus).

•
𝐹𝐹 r

(𝑒𝑒𝑒𝑒)r⊥

Figure 3. Defining a conic

Contrary to the popular belief, conics and related matters can be treated
much more properly with vectors than with coordinates.

Many kinds of geometric transforms, and a number of other topics in plane
geometry, are handled most adequately in the vector language. It is equally
well suited for the proving and the construction type of problems. As vectors
serve successfully both the classical and the analytic realms of geometry, they
can be seen as a unifying language for the discipline. In (Bantchev 2017) and
elsewhere, we have outlined some advantages of the calculational approach,
specifically the one based on vectors, over the synthetic one in geometry.

29

An Approach and a Tool...

4. A language for geometric programming
Having an extensive and gratifying experience with developing the two-

dimensional vector algebra and its application to plane geometry, a natural
next step was to consider casting this approach into a language that could
be used on a computer. Doing calculations, deriving formulae, and describ-
ing geometric figures in terms of other figures was already a form of pro-
gramming, but it remained to give the algebraic language an executable,
computing-oriented shape, ensuring practicability.

Let us sketch the rationale and the main features of the language we de-
signed with the above in mind.

Unlike the languages in the known geometry systems or libraries men-
tioned in section 1, our language does not aim to provide ‘high-level’ con-
structions of geometric figures. Most such constructions, as found in the
command menus of a dynamic geometry program or in a geometric language,
boil down to a line or two when expressed as calculation with vectors on the
given data. Tens of such constructions can be encoded as a short list of for-
mulae.

Therefore, by providing a useful set of operations on vectors, our language
ensures utmost versatility while remaining small. In place of a fixed list of
geometric constructions that, no matter how large, cannot meet all possible
needs, there is a small yet powerful set of basic operations, out of which
any conceivable geometric construction can be built, and succinctly at that.
This approach easily achieves what in a closed and finished form is present
elsewhere, and much more than that.

From the viewpoint of a teacher or a learner of geometry, the said approach
also has the virtue of keeping in observable, text form all needed geometric
constructions. They can thus be studied, compared, edited, reused, etc.

It must be stressed that practicability of the language is achieved through
broad use of vector operations. Computing with coordinates is supported but
very rarely needed.

On the other hand, we deemed necessary to augment the small set of vec-
tor operations presented in section 3. These operations suffice to express any
computation, but for practical purposes it is useful to have shortcuts for dif-
ferent ways of producing vectors or numbers out of other vectors or numbers.
That is why such shortcuts were included in the language. We describe them
in the next section, along with many other operations.

Besides numbers and vectors, other kinds of data — Booleans, text strings,
and sequences — were also considered useful for the language, and thereof
included in it.

Text strings may seem to have little use in geometric computation, but
sometimes one needs to properly format a number, and perhaps to put to-

30

Boyko Banchev

gether several pieces of text, so that the result of a computation is output
in a readable form. Strings also serve as keywords designating construction
sub-commands and other things related to creating a drawing.

Sequences can be formed of values of any kind, including other sequences,
and are thus hierarchical structures. They can be used to represent geometric
figures of any sort and complexity. For example, a line segment may be
represented as a pair of two end points (position vectors), a polygon — as
any number of vertices, etc. Obviously, keeping a flat or hierarchical scene
as a sequence is also possible, and in more than one way.

Sequences play an important role in the part of the language responsible
for drawing.

There are no points as a separate kind of values in the language. There is
no need for them either, because computationally a point is indistinguishable
from its position vector.

At present, the calculational part of the language consists of nearly eighty
operations in twelve levels of relative precedence. A small number of opera-
tions have names made of letters, and the rest are designated each by a single
non-alphabetic character. This is achieved by a heavy use of name overload-
ing: using a single name for several (as it turns out, up to eight) operations,
the distinction among them being made by the types of the arguments used
in each single instance of an operator.

This is not unlike what one finds in programming languages such as APL
and J, although the actual mapping of names to meanings is very different.
The overloading is a result of very carefully choosing the names so that, in
making sense of them, a reader is aided by ‘naturalness’ and semantic affin-
ity. For example, the same character (-) is used for arithmetic and logical
negation, string and sequence reversal, and reversal of (the direction of) a
vector, all of which have the idea of oppositeness in common. Similarly, the
character | is used for any of absolute value of a number, length of a vector,
and the number of elements in a text string or a sequence, all these ultimately
being magnitudes.

The language admits introducing variables, along with certain freedom in
naming them. The name of a variable may be any mixture of Latin, Greek,
and Cyrillic letters, ' (quote), decimal digits, as well as the subscript digits
0123456789. Examples of names are φ, x', a4, and λμν'xy.

Some of the operations have aliases, to be used depending on the intended
meaning in a particular use, or simply on preference.

An important characteristic of the language is that it strictly separates com-
putation from presentation. There are in fact two co-existing languages: one
that is concerned with computing and possibly producing abstract geometric
constructions, and another that enables the production of a graphical image

31

An Approach and a Tool...

of a geometric scene. The latter sub-language consists of a single command,
#show, the argument to which is a sequence. The sequence is structured ac-
cording to simple rules, but can be arbitrarily complex, representing anything
from a single geometric object to a scene composed of many such objects
with different visual attributes.

To each geometric object or a group of objects can be attached colour, line
width, and other visual attributes, as well as a linear transformation. Nest-
ing groups of objects is obtained through nesting sequences, and in the thus
formed hierarchy attributes apply locally at the level to which they are at-
tached. Nested sequences can also be used as layers: sets of related objects
that are to be added to the scene or removed from it as one whole.

Separating computation from drawing has several implications which de-
serve to be emphasized as differences from most geometric systems, where
an object is drawn implicitly upon construction, and tacit assumptions affect
actual drawing.

First, constructing a geometric object in our language is merely computing
its defining data — say, the centre and radius of a circle. It has nothing to do
with whether the object is going to be drawn, and what visual attributes apply
if it is. Second, giving a name to an object is done for the sole purpose of
making it possible to refer to that object. It does not mean that the same name
should accompany the object if the latter is drawn. Labels and denotations at-
tached to the drawing are entirely independent of any names possessed by the
objects in a script, and are placed explicitly, precisely where they are wanted.
Third, the order in which objects are placed in the drawing is unrelated to the
order in which objects are being constructed. This is rather important as the
former order defines the visual overlapping between objects, hence it must
be chosen freely as wished or needed.

5. Operators on vectors and other data
In this section we glance at the many operations available in the language

for computing with numbers, vectors and other values.
The four basic arithmetic operations on numbers are designated by the

usual characters +, -, *, and /. There is also ^ — exponentiation, and % —
remainder of division in which the quotient, if not an integer, is replaced by
the nearest number below it (so that e.g. 13%-5 would produce −2). There
are three trigonometric operations, namely #sin, #cos, and #tan.

Numbers can be compared with <, >, =, or ~ (not equal). All comparisons
are performed up to a tolerance, which is set as the value of the special vari-
able #eps. For chosing the maximum and minimum of two numbers, there
are | and &, respectively, which are also the ‘logical or’ and ‘logical and’ of
Booleans. Booleans too can be compared. They can also be used as argu-

32

Boyko Banchev

ments to operations that expect a numeric argument, ‘true’ then meaning 1
and ‘false’ meaning 0.

Provided are two numeric constants — #pi, which is 𝜋𝜋, and the base of
natural logarithms #e — and the two Boolean constants, #t and #f.

Most mentioned names also designate one-argument operations as fol-
lows. Arithmetic and Boolean negation are both named -, the tilde ~ is ‘not
zero’, * is the sign operation (−1, 0, or 1, according as the argument is neg-
ative, zero, or positive), / gives the reciprocal of a number, | the magnitude
(| … |), and ^ the natural logarithm of the argument. <, >, and =, when used
as monadic operations, round their argument to an integer, if it is not already
one: the nearest below, the nearest above, and the result of truncating the
fractional part. Thus, <-2.7 would produce −3, while any of >-2.7 and
=-2.7 gives −2.

Naturally, many operations in the language act on vectors, produce vec-
tors, or do both of these. For example, a vector can be constructed in several
ways: from coordinates, as in 5,3.6; from a length and direction angle; from
direction angle only (a unit vector); by rotating a vector to an angle; by chang-
ing the length of another vector. The last four operations are all denoted @,
but no ambiguity arises with respect to which of them acts in a particular
instance, as the arguments differ in number and type.

The most basic arithmetic operations on vectors are the same as for num-
bers, e.g. - is both subtraction of vectors and opposite vector, and the monadic
| finds the length (i.e. magnitude) of a vector. For the direction of a vector
and the angle between two vectors, again monadic and dyadic instances of @
are used. The < and > comparisons are, like with numbers, up to tolerance,
but are used to test for precedence of directions (≺ or ≻) of the respective
vectors. Another operation (dyadic |) tests for concurrency.

Yet another way to construct a vector is by reverse subtracting. For in-
stance, if A and B are vectors, A_B is the same as B-A. The arguments of _
can be any expressions, but this operation is most useful with names — it
is meant to imitate the widely used mathematical notation: AB as a short-
cut for B−A. For the same reason _ has the highest precedence among all
operations, so e.g. A_B^A_C correctly computes the area [𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

For multiplication, the character · may be used as an alias of *, which of
course is useful for visually distinguishing scalar products. As for the area
product and the ⊥ operation, ×, ^, and ⊥ are interchangeable, both in the
monadic and the dyadic cases. The monadic case also applies to any sequence
𝑃𝑃1𝑃𝑃2 … 𝑃𝑃𝑛𝑛 of (position) vectors, computing 𝑃𝑃1×𝑃𝑃2+⋯+𝑃𝑃𝑘𝑘𝑘1×𝑃𝑃𝑘𝑘+𝑃𝑃𝑘𝑘×𝑃𝑃1,
which is [𝑃𝑃1𝑃𝑃2 … 𝑃𝑃𝑛𝑛𝐴 when 𝑃𝑃1𝑃𝑃2 … 𝑃𝑃𝑛𝑛 is a non-intersecting polygon.

Complex arithmetic is covered in the language by providing operations
that treat vectors as complex numbers.

33

An Approach and a Tool...

Text strings and sequences, both being linear structures, are handled by
more or less the same set of operations. These include finding the length (|),
a prefix or suffix (%), an element with specific index (/), reversal (-), and
catenation (+).

Besides catenation, a sequence can be extended by appending another se-
quence as a single element to it. Thus, if A and B are sequences of 3 and 5
elements, A+B produces a sequence of length 8, made up of all the members
of A and B, while A,B has only 4 items. In fact, B can be anything: sequence
or not, it is a single item in A,B at its last position.

Note that with the exception of the empty sequence (), there is no special
syntax in the language for representing vectors and sequences. A vector or
sequence is always produced by applying an operation on suitable arguments,
as described above.

The | operation, when acting on a number and a sequence of a special
kind, produces a string with a formatted representation of the number. For
example, the expression (355/113-#pi) | (10,'(.),15,'(>␣)) would
produce the string ␣␣␣0.0000002668 of length 15, in which the number
355/113−𝜋𝜋 is represented with 10 digits in the fractional part and is right-
aligned within the length of 15, with leading visual spaces.

6. Drawing figures and text
In our geometric language, graphical output is produced by using the com-

mand #show. To draw a particular geometric figure or a text, one has to fill in
a construction sequence of a specific form. There are, at present, eight types
of construction sequences: for points, line segments, infinite lines, rays, cir-
cles, circular arcs, chains (of line segments and arcs), and text. Any such
sequence can be feeded as an argument to #show.

Each construction sequence starts with a string that tells what kind of ob-
ject is to be constructed — "point, "line, "iline, "ray, "circle, "arc,
"chain, or "label — followed by one or more arguments, specific for the
object.

More specifically, a point construction requires a (position) vector, and
a line segment or a line requires two such vectors. Similarly for a ray, but
there one of the vectors specifies a direction rather than a point. A circle is
specified by a position vector for the centre and a number for the radius.

For arcs, there are two options. One of them is to specify the arc by its
centre, start point, and angular span. The other option requires start and end
points, along with another point between them and also on the arc.

Yet another option for constructing a circular arc is available through
building a chain, where, along with a start and end points, an oriented dis-
tance of the centre to the chord is given, together with arcs orientation, pos-

34

Boyko Banchev

itive (CCW) or negative. A chain is a sequence of line segments and arcs,
and as a line may be open or closed.

Drawing a ray goes together with producing an arrow mark in the drawing
which visually informs of the respective direction. An arrow mark can also be
attached to a line segment, an infinite line, or an arc by providing an optional
argument at the end of the respective construction sequence — a number
which defines where exactly along the said object the arrow mark must be
placed.

With a "label construction sequence, a drawing can be annotated with
names of objects and other helpful text. Graphical attributes, such as scale
and colour, apply to text annotations just as they do to any geometric object.

A useful technique when placing a piece of text with "label is to separate
the position into absolute and relative parts. The former is typically a point,
and the latter an offset from that point. For instance, with the sequence

"label,'(β/2),K+2@-15
the text 𝛽𝛽𝛽𝛽 is put at a distance 𝛽 in the direction of −15∘ from point K. This
is done by adding the vectors K and 2@-15, the latter of which happens to be
computed in polar form.

Specific attributes can be attached to one or more construction sequences,
in order to visually distinguish the respective parts from the rest of the draw-
ing or apply a geometric transformation to these parts. Line width and line
type, as well as colour and opacity — of a line itself or of the area to which it
is a border — can be set as necessary. Translation, rotation and scaling can be
applied instead of, or together with, setting visual attributes. By composing
these three any affine transform can be obtained.

In general, an argument to #show may be any list of items, to which a list
of attribute settings is attached. Any of these items can itself be another such
list with attributes attached, and so on downwards, ending with construction
sequences for points, lines, arcs, and text, as enumerated above. This hier-
archy of geometric and text objects comprises the scene to be visualized by
#show. The higher in the hierarchy, the earlier an object is put on the draw-
ing. Because objects that are put later may partially or entirely hide the ones
already placed, this must be taken into account when composing the scene.

Down the hierarchy each attribute remains in effect until another of the
same kind appears. At this point transform attributes add up, while graphical
ones, such as e.g. colour, get replaced in the local scope.

35

An Approach and a Tool...

7. Computer implementation
The language described in the previous three sections has received the

name ForGe and has been implemented by the author. The implementation
is an interpreter written in the programming language JavaScript and can
be run in a Web browser. It is publicly accessible through a simple visual
interface from the author’s Web page.5 A series of examples in construction
and drawing is available for perusal and experimentation at the same place.

That JavaScript is universally available makes the ForGe implementation
independent of the operating system and other elements of the operating en-
vironment. In addition, as ForGe scripts are plain text, it is easy to gener-
ate them programmatically, or to process them using general text processing
tools. Programmatically generated scripts can make use of the whole ForGe
language or, say, only of its ability to produce a graphical output. These are
important indicators of the ability of the ForGe implementation to co-operate
with other software.

As a ForGe script is run in the interpreter, possible syntax and other er-
rors are properly detected and signaled to the user. If correct, the script can
produce two kinds of output — text and graphics. The text output consists of
ForGe values in a text form. Sequences, being composite values, are output
in a structured way, so that their components are clearly distinguished and
nesting is visually apparent.

Quality of graphical output is ensured by presenting the drawing in the
SVG format. The drawing is immediately seen in the browser, and can be
extracted as an SVG file, thus enabling its further use for what it may be
needed. As all modern Web browsers, most word processing and document
preparation systems, and many other programs can interpret SVG files, the
latter are universally usable in all kinds of Web browser hosted environments,
as well as in printed documents. The scalability of SVG and its support of a
wealth of graphics features make it an excellent choice wherever rich content,
high-quality graphics is required.

The SVG that is automatically produced by various programs is often
needlessly large, but this is not the case with ForGe — its interpreter is par-
ticularly good at producing a space-efficient SVG.

The very interpreter is remarkably small — hundreds to thousands of times
smaller than the implementation of any geometric system or library we know
of, being at the same time equal or comparable in functionality.

8. Further development
Several directions of extending ForGe and improving its usability are be-

ing envisaged by the author. One of them is to make the implementation run
as a console program, rather than just in a browser. This is possible and at-

36

Boyko Banchev

tractive due to the spread of non-browser JavaScript runtime environments,
such as Node.js and Deno, across all popular operating systems. Opening the
ForGe interpreter to console mode of execution would enable direct interac-
tion with text processing software through channels, pipes and other facilities
of the operating system. Both ForGe’s input and output can be directed to
other programs within a console command or a script of the operating system.

Another direction of improvement is redoing the graphics generation part
of the ForGe interpreter so that it can output in other image formats, such as
PostScript or PDF, besides SVG. Particularly attractive is generating TikZ6

scripts that can be interpreted within TEX, LATEX, and their relatives. In this
way drawings can be produced by ForGe, benefiting from its computational
machine, and then annotated using the fonts and the very expressive language
for composing formulae in a TEX-based system.

The ForGe language itself can be improved in several ways. These in-
clude adding conditional and repetitive execution, as well as user-defined
procedures. Most constructions in the language are but simple formulae, but
even so, referring to a formula by name would be simpler than pasting it
each time anew and entirely. Libraries of such definitions can be supplied
with ForGe to facilitate creating scripts in it and make them more readable.

Drawing conic sections and providing basic operations on them is another
possible enhancement of ForGe.

The current browser-based user interface to ForGe, although effective, is
rather limited. There are numerous possibilities of improving it. Building
and experimenting with user interfaces, browser-based or other, that pro-
vide access to ForGe’s geometric computing and drawing, is deemed a very
promising field of exploration into both computer geometry and user inter-
faces in general.

NOTES
1. https://poincare.matf.bg.ac.rs/%7Ejanicic/gclc
2. http://eukleides.org
3. https://doc.cinderella.de/tiki-index.php?page=CindyScript
4. https://jsxgraph.uni-bayreuth.de
5. http://www.math.bas.bg/bantchev/ForGe
6. https://tikz.dev

37

An Approach and a Tool...

REFERENCES
BANTCHEV, B., 2017. Menelaus, Einstein, Peano and the proofs in ge-

ometry. Mathematics and Education in Mathematics: Proc. 46th Spring
Conf. of the Union of Bulgarian Mathematicians, vol. 46, pp. 221 – 229.

� Dr. Boyko Bantchev, Assoc. Prof.
ORCID iD: 0000-0002-0284-312X

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Acad. G. Bonchev St., bl. 8
1113 Sofia, Bulgaria

E-mail: boykobb@gmail.com

