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Abstract. Neural networks are fundamental concept in artificial 
intelligence and machine learning, inspired by the structure and function of 
the human brain. A neural network is a computational model composed of 
interconnected nodes (called neurons or units) organized in layers. These 
networks are designed to recognize patterns, learn from data, and make 
predictions or decisions.

As a part of the neural networks, mechanical neural networks are physical 
systems designed to mimic the behavior of artificial neural networks using 
mechanical components. These systems leverage the properties of materials and 
structures to process information, adapt to external stimuli, or perform tasks such as 
pattern recognition, optimization, or control.

The developed surface-shaping mechanical neural network is based on 
systems with parallel kinematics but in addition contains sensing elements part 
of the electronic system controlled by developed software. The system can 
adapt its surface geometry depend on the external stimuli, in this case the force 
applied on it. 

Keywords: mechatronic; neural network; flexure; rotation; surface-shape; 
parallel kinematic

1. Introduction
Mechanical neural networks bridge the gap between classical mechanics 

and modern control theory, enabling systems that adapt in real-time to dynamic 
environments. By combining analytical models (e.g., differential equations) with 
computational tools (e.g., machine learning), they offer unprecedented flexibility 
for applications in aerospace, robotics, and energy (Lee, 2022).

The mechanics of the system is based on the manipulators with parallel 
kinematics (e.g. Stewart Platform) in this case with 3 movable legs (tripods). The 
system contains 24 tripods that are connected to each other through flexures and 
stepper motors. The overall design is shown on Fig. 1.
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Figure 1. The developed mechanical neural network

Unlike the hexapods (e.g. Stewart Platforms) and delta robots where the moving 
armes (legs) are six, there are many constructions using three movable arms to 
obtain spatial motion. These mechanisms are not so complex as hexapods and they 
find applications in various industry like biomedicine, machine tools, positioning 
systems, etc.

Tripods, typically have 3-DOF (translation in X, Y, Z) or up to 6-DOF if rotational 
joints are added to each leg. Each leg contributes to controlling the position of 
the moving platform (Nikolov et al., 2022; Nikolov et al., 2024; Stoimenov et al., 
2024).

3-Leg Parallel Mechanism has simpler design: Fewer legs and actuators reduce 
mechanical and control complexity and they are easier to design: Inverse kinematics 
is simpler due to fewer interdependent variables (Bonev, 2008). Compared to the 
hexapod systems, tripods have lower precision, fewer legs mean less redundancy, 
making the system more sensitive to errors in individual actuators and reduced 
stability – less load distribution compared to 6-leg systems. They are lightweight 
and simpler for calculation (Dimitrova et al., 2025; Gallardo-Alvarado, 2016; 
Gogu, 2008).

For the improvement of the precision of the parallel kinematic system, it is 
required the sources of play and friction in the joints and actuators to be eliminated. 
Therefore, the traditional bearings are replaced by flexure-based equivalents to 
enable motion, which rely on elastic deformation of slender elements, instead of 
tribological contacts. The flexure-based design also is capable of reaching higher 
speed and acceleration of motions due to the lack of friction (the friction is on an 
atom level).

The applications of the mechanical neural networks could be in a different areas 
and purposes like in robotics for adaptive grippers, soft robots that adapt to different 
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tasks or environments; Metamaterials for tunable stiffness, vibration control; 
Structural Engineering for adaptive buildings, earthquake-resistant structures; 
Biomechanics for prosthetics, wearable devices; Computing for mechanical logic 
gates, analog computing; Impact-absorbing materials or morphing wings for 
aircraft; Wearable Technology for clothing or exoskeletons that adapt to the user’s 
movements (Gogu, 2009; Kong & Gosselin, 2007).

2. Key Components of the Neural Networks Structure 
Neurons (Nodes) – Basic units of computation in a neural network. Each neuron 

receives input, processes it using an activation function and produces an output. 
In this case input value is given by the force sensors – when one or multiple force 
sensors are activated, the surface is changing using the stepper motors (Lee, 2022; 
Merlet, 2008).

Input Layers – Receive the initial data. In this case the input layers are the force 
sensors.

Hidden Layers – Intermediate layers where computation, feature extraction 
occurs, or reaction is accumulated/transferred. In this case these are the elastic 
elements that transfer the calculated transition.

Output Layers – Produce the final result. In this case these are the stepper motors 
that are changing the shape of the surface according to the input values.

Weights and Biases – Weights determine the strength of connections between 
neurons. Biases allow the model to adjust the output independently of the input. 
Based on the created computable model, the coordinates and the values of the 
input force are transferred to motor movements e.g. changing of the shape of 
the surface

Activation Function – Calculates the output of the node based on its individual 
inputs and decides whether a neuron should be activated or not. This means that it 
decides whether the neuron’s input to the network is important or not.

Loss Function – Measures the difference between the predicted output and the 
actual target.

Optimization Algorithm – Adjusts weights and biases to minimize the loss 
function.

3. Design of the Neural Network Structure 
Important characteristics of the current neural network structure is the flexibility 

of the independent feature of the surface, in this case the shape is triangles. Flexure 
elements are in the form of leaf springs, in this case 2 relatively long (5 mm) leaf 
springs. In order to be capable to obtain different angles and shapes, all triangles are 
connected each other but they move independently.

The theoretical structure has n-numbers of triangles and n-numbers of stepper 
motor. These numbers depend on the needed surface area. In this study case the 
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numbers of the triangles are 24 and the numbers of the used stepper motors are 
19 (Tsolov et al., 2024; Vose et al., 2013). The surface of the structure is almost 
64 cm2 (Fig. 3).

   

Figure 2. The developed tripod and its kinematic scheme

Design of the flexure provide rotations but is stiff in vertical direction in order to 
withstand different vertical forces that can be calculated trough the sensors. One of 
the goals of the design was this system to be able to be produced with 3D printing 
technology, so all the components including the elastic guides are designed with 
this in mind (Zagorski et al., 2022). 

Figure 3. Design of the flexure-based structure
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The network consists 24 tripods (Fig. 3) that are able to perform movement 
along 3 axis (3-DOF). The equivalent simplified parallel kinematic scheme (Fig.2) 
is 3-PRR mechanism (P – prismatic R – revolute), although relatively long leaf 
springs have more complex behavior in terms of rotation from one fixed or movable 
rotation point to two points of rotation depend on the form, stress and deformations.

Assembly of the flexure-based structure contains: Platforms in the form of 
triangles (pos. 1) that can be positioned in a different angle; Flexures (pos. 2); Nuts 
with threads that are moved via screws (pos. 3) mounted on stepper motors (pos. 4).

With rotation of the stepper motors the flexures are moved in different vertical 
positions and depend on the displacement the triangles are moved in different angle. 
All triangles togethers (the smallest segment) are part of a neural network that can 
change its surface shape depending on the provided input (in this case the multiple 
force sensors).

Motions and control of the system are implemented through multiple ESP32 
microcontrollers and arrays of force sensors and stepper motors attached to them. 
The stepper motors are driven by TMC2209 stepper motor drivers. One of the key 
features of these drivers is the DIAG (diagnostic) pin, which allows the system 
to detect the end position without using additional limit switches. These ESP32 
units communicate with a Raspberry Pi via a USB serial interface. The role of the 
Raspberry Pi is to processes the input form the microcontrollers and to determine 
the precise rotation needed for the stepper motors.

4. Simulation analysis 
Elastic compliant mechanisms usually have limited motions due to the limited 

working range of the elastic elements. The system should be capable of relatively 
large displacement so the design of the flexure was an essential part of the 
development in order to provide the required motions.

The working range is limited by the thickness h of the flexures and its length. 
This dependence of the flexure’s thickness and the working range can be taken from 
the equation for calculating the maximum displacement that a given flexure can 
withstand depending on the material (1):

  (1)

The dependence shows that the smaller the size for h at the given length L, 
the larger is the angle at which the flexures can be deformed (Diakov et al., 2021; 
Dichev et al., 2023).

The aim of the next analysis is to show how capable is the system in term of 
motions e.g. motion limits. The study is performed with CAD software using 
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finite element analysis (FEA). The study scheme replicates the movements and 
deformations in the real application as close as possible in order to provide reliable 
results (Fig. 4).

On fig. 5 is shown only one of the possibilities of movement of the system, 
but the results of the study can show what are the motion limits and shape of the 
surface.

Actually, the most important is the motion limits between two stepper motors 
close each other as this is where it has larger deformations e.g. larger stresses.

Another point of interest is if there are different limitations in case the surface 
has convex or concave shape.

   
Figure 4. Motion limits analysis scheme

Figure 5. Deformation picture of the study – convex shape

In the first study case (fig. 5) the desired shape is convex. One of the triangles 
has light pressure force on it and needs to move upwards, of course there will 
be similar deformation if the triangle stays in position and all other triangles are 
moved down (all motors are activated and all legs of the tripods are moved down 
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according to the desired shape). In this particular study case, the three legs of the 
tripod that is pressed are activated and moved up with 3 mm (pos. 1), the “middle 
ring” of tripods (pos. 2) are fixed and all outer legs of the tripods are moved down 
with 3 mm (pos. 3). 

This means that the displacement along Z axis between two adjacent translation 
movement axes (stepper motor axes) is 3 mm and the maximum displacement of 
the legs is 6 mm. The result is a simple convex shape with angle of approximately 
9° between the horizontal segment and the others. Factor of safety in this study case 
with material PA6 is more than 2 (Kotseva et al., 2024; Todorov et al., 2024).

The FEA study of the movement of the legs along Z axis is performed with 
3 mm as this is the required amount of movement but in order to understand the 
maximum allowable displacement along Z axis between two adjacent translation 
movement axes (stepper motor axes), a study in such a case was performed. With 
maximum displacement the factor of safety (FOS) should be more than 1.1. In such 
a case when FOS = 1.1, the system is capable to move along Z axis between two 
adjacent translation movement axes with 5.5 mm and angle between the horizontal 
triangle and the others in approx. 9°. This is relatively large displacement for such 
a flexure-base design (Dichev et al., 2024).

The elastic mechatronic system needs to move not only in convex shape but to 
concave shape as well, so a study to analyze the maximal allowable movement of 
the legs along Z axis is performed. 

In this study case the same legs are fixed like the previous study (Fig. 5) but 
the legs that were moved up (+Z direction) are moved down (-Z direction) and the 
others are moved in opposite direction as well.

Deformation picture is shown on Fig. 6.

Figure 6. Deformation picture of the study – concave shape
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In this study case where a concave shape is required, the design is more 
restricted due to the distance between the triangles. The developed flexures can 
provide more than 5.5 mm movement of the legs along Z axis but the triangles 
are pressed each other before reaching this distance. The results show that the 
maximum displacement along Z axis in case the needed shape is concave is 2.7 
mm when the distance between two triangles is 1.2 mm. In case more displacement 
is needed, the distance between triangles need to be enlarged.

This difference in motion capability along Z axis between concave and convex 
shape is due to the design of the surface and is captured in the developed control 
software in order to prevent collisions or damage of the flexure. 

Allowable distance between two adjacent legs (e.g. stepper motors) in case 
concave shape is formed is 2.5 mm and in case convex shape is formed – 3 mm 
(Dichev et al., 2016; Dichev et al., 2019).

Case study where the surface is flat but inclined is perform as well (Fig. 7). 
As the displacement along Z axis is limited to 3 mm the maximum angle that the 
surface can achieved is 9°. This angle can be enlarged to 17° as the maximum 
permissible displacement of the legs (e.g. stepper motor) is 5.5 mm and it can be 
used in case such a surface shape is needed (Diakov, 2021; Dichev et al., 2021).

Figure 7. Deformation picture of the study – inclined surface

5. Conclusions
The results of the motion analysis confirm that the developed surface-shaping 

mechatronic neural network can provide different configuration of its surface – 
convex, concave or any random positions. 

Depending of the shape the maximum displacement between two adjacent 
legs (e.g. stepper motors) for convex shape is maximum 3 mm and for concave 
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shape is maximum 2.5 mm. This is considered during the development of the 
software. 

Maximum angle between the triangles is 9°, but this can be set to 17° only in 
convex shape if needed as the design can move along Z axis (convex shape) up 
to 5.5 mm. This is applicable also if the system needs to be set to a relatively flat 
inclined surface.

The system can move along Z axis up to 20 mm, but this can be adjusted 
depending how long is the travel of the linear actuators. 

These results take into account the calculated factor of safety and maximum 
allowable movement due to the distance between the triangles.

The area, the size and numbers of the triangles of the neural network can be 
adjusted to adapt to a specific application.
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