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Abstract. Pneumonia and meningitis pose substantial threats to global public 
health due to their high morbidity and mortality rates. This study investigates 
the dynamics of these diseases with a focus on coinfection and evaluates the 
effectiveness of vaccination as a control measure. Using a mathematical model, the 
transmission dynamics are explored and the basic reproduction number is derived 
to identify conditions for disease-free and endemic states. Numerical simulations 
analyze the impact of varying vaccination compliance levels, demonstrating that 
higher compliance significantly reduces the number of susceptible and infected 
individuals while increasing the vaccinated population. The study emphasizes the 
need for integrated public health strategies combining vaccination campaigns, 
efficient vaccine distribution, and supportive medical care to mitigate the burden 
of pneumonia and meningitis coinfections. These findings provide a framework 
for designing effective interventions aimed at reducing disease prevalence and 
improving public health outcomes.
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1. Introduction
Infectious diseases remain a persistent challenge for public health systems 

worldwide, causing substantial illness and death. Among these, pneumonia 
and meningitis are particularly concerning due to their prevalence and severe 
consequences. Pneumonia, primarily caused by pathogens such as Streptococcus 
pneumoniae, is a major cause of death, particularly in young children and older 
adults (McLuckie 2009). Meningitis, commonly caused by bacteria like Neisseria 
meningitidis and Haemophilus influenzae, is a life-threatening condition that affects 
the brain and spinal cord, often resulting in significant fatalities or long-term 
disabilities (Fresnadillo Martínez et al. 2013; Afolabi et al. 2021). Addressing these 
diseases is a key priority for reducing their burden on global health.
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Pneumonia affects the respiratory system and is transmitted through airborne particles. 
It is responsible for millions of deaths annually, with Streptococcus pneumoniae being a 
leading cause (World Health Organization, 1991). This bacterium is also linked to other 
serious infections, including meningitis and sinusitis (Opatowski et al. 2013; Kotola 
et al. 2022). Meningitis primarily targets the central nervous system and is associated 
with high mortality and long-term neurological complications (Zunt et al. 2018; Tilahun 
2019). When pneumonia and meningitis occur together, they pose significant challenges 
to clinical management and public health efforts. This combination increases the severity 
of illness and places additional strain on healthcare systems (Tabatabaei et al. 2022;  
Chukwu et al. 2020). Despite these challenges, the mechanisms of coinfection remain 
insufficiently studied, leaving gaps in our understanding of effective treatment and 
prevention strategies.

Coinfection, where two or more pathogens infect a person simultaneously, has 
significant implications for disease progression, transmission, and treatment outcomes 
(Kehr & Engelmann, 2015). The combined occurrence of pneumonia and meningitis 
is particularly concerning, as it may worsen patient outcomes and complicate medical 
interventions (Obi et al. 2010; Kotola & Mekonnen 2022). Understanding the interplay 
between these infections is critical for developing effective public health strategies and 
improving clinical outcomes.

Mathematical modeling plays a pivotal role in understanding and addressing 
infectious diseases by offering frameworks to simulate disease dynamics and 
assess intervention strategies (Tilahun et al. 2018; Asamoah et al. 2018). According 
to Bailey (1975), the primary goal of mathematical modeling in epidemiology 
is to support informed decision-making. Models help evaluate the most cost-
effective approaches to minimize the adverse impacts of diseases (Di Liddo 2016;  
Kizito & Tumwiine 2018). Researchers have developed models for pneumonia and 
meningitis individually, enhancing our understanding of their spread and informing 
control measures (Blyuss 2016; Joseph 2012; Musa et al. 2020). Pneumonia, for instance, 
has been the subject of extensive modeling efforts due to its significant global burden 
(McLuckie 2009; Joseph 2012). Tilahun (2019) utilized the SIR model to explore the 
co-dynamics of pneumonia and meningitis, contributing valuable insights into their 
interactions.

The application of mathematical models extends to evaluating vaccination and 
treatment strategies. For example, Tilahun et al. (2017) developed an SVCIR model to 
investigate cost-effective control strategies for pneumonia, concluding that a combination 
of prevention and treatment yields the most significant impact. Similarly, Onyinge et al. 
(2016) formulated models to analyze pneumonia coinfection with HIV/AIDS, highlighting 
the importance of combined intervention strategies. These efforts underscore the utility of 
mathematical frameworks in optimizing resource allocation for disease management.

In the case of meningitis, mathematical modeling has been instrumental in 
understanding its epidemiology and guiding control efforts. Meningitis remains a 



73

Mathematical Modelling of the Transmission Dynamics...

severe global health threat, particularly in resource-limited settings (Zunt et al. 2018;  
Ghia & Rambhad 2021; Abdullahi Baba et al. 2020). Outbreaks of bacterial 
meningitis, often caused by pathogens like Streptococcus pneumoniae and Neisseria 
meningitidis, demand urgent interventions (Van De Beek et al. 2010; Scarborough 
& Thwaites, 2008; Türkün et al. 2023). Models have been used to predict outbreak 
dynamics and assess the impact of vaccination programs (Jayaraman et al. 2018; 
Oordt-Speets et al. 2018; Kotola et al. 2022). For instance, the introduction 
of vaccines targeting  Haemophilus influenzae  type b and  Streptococcus 
pneumoniae has significantly reduced the incidence of bacterial meningitis in high-
income countries, though the burden persists in low- and middle-income regions 
(McIntyre et al. 2012; Peter et al. 2021).

Despite these advances, the combined dynamics of pneumonia and meningitis 
remain underexplored, particularly in the context of vaccination. Few studies have 
addressed their coinfection using mathematical models. Tilahun (2019) developed 
a model incorporating both diseases and emphasized the need for integrated 
approaches to improve intervention outcomes. Such efforts are essential for 
addressing the complexities of coinfection, where interactions between diseases 
may amplify severity and complicate treatment (Kotola & Mekonnen 2022; 
Chukwu et al. 2020). Still, studies on their combined dynamics remain limited, 
and existing models often fail to capture the combined effects of these diseases or 
explore the role of vaccination in reducing their impact. This highlights the need 
for a comprehensive approach to modeling pneumonia-meningitis coinfection, 
particularly in resource-constrained settings. This study seeks to address these gaps 
by constructing a mathematical model to examine the dynamics of pneumonia-
meningitis coinfection considering the impact of vaccination.

2. Mathematical Formulation
In this study, we present a deterministic mathematical model designed to 

capture the transmission dynamics of pneumonia and meningitis coinfection within 
a population. The model divides the population into seven distinct compartments. 
These compartments include susceptible individuals (denoted as S), who are healthy 
but can be infected by pneumonia, meningitis, or both; vaccinated individuals (V), 
who have received protection through vaccination; pneumonia-infected individuals 
(Ip), who are infected solely with pneumonia and can transmit the disease to others; 
meningitis-infected individuals (Im), who are infected solely with meningitis; 
coinfected individuals (Ipm), who are infected by both pneumonia and meningitis; 
and recovered individuals (R), representing those who have recovered from 
pneumonia, meningitis, or both diseases, or those who have removed themselves 
from the transmission cycle through vaccination.

The total population at any time t is the sum of all these compartments, given by
N(t) = S(t) + Ip(t) + Im(t) + Ipm(t) + R(t) + V(t).
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The dynamics of each compartment are governed by a system of differential 
equations that describe how individuals move between compartments due to 
factors such as infection, vaccination, recovery, and death. The rate of change for 
each compartment is determined by various transmission, recovery, and death rates.

The susceptible population, denoted by S(t), is influenced by recruitment at a 
rate � , and it is impacted by the force of infection due to contact with infected 
individuals, which is represented by the transmission rates σ

1
, σ2 and σ3 for 

pneumonia, meningitis, and coinfection, respectively. The susceptible compartment 
also decreases due to natural deaths at a rate μ, as well as due to recovery from either 
pneumonia or meningitis. Furthermore, there is a transfer from the vaccinated group 
to the susceptible group, modeled by the rate χ, as vaccination immunity wanes. 
This is balanced by a natural recruitment rate of new susceptible individuals, with 
vaccination and recovery contributing to the pool of new individuals who might be 
susceptible again at rate θ.

The vaccinated individuals, represented by V(t), are recruited from the 
susceptible population through vaccination, but they are also susceptible to 
infection at a reduced rate due to the effectiveness of the vaccine. The vaccination 
rate is affected by the contact with infected individuals as well as the natural death 
rate. Additionally, some vaccinated individuals may become susceptible again if 
immunity wanes, which is modeled by the transfer rate χ .

The compartment for pneumonia-infected individuals, Ip(t), represents those 
infected only with pneumonia. These individuals become infected through contact 
with susceptible individuals or those vaccinated but not fully protected. The rate 
of change of this group is influenced by the transmission rate for pneumonia, σ1, 
as well as the rate of recovery, denoted by γ1, and the death rate due to pneumonia 
complications, represented by μ. These individuals either recover or die from 
pneumonia, and they may transition to the recovered state at a rate δ1, which reflects 
the rate of recovery from pneumonia.

Similarly, the meningitis-infected individuals, Im(t), represent those infected 
solely with meningitis. The rate of change of this compartment depends on the 
transmission rate σ2 and the interaction between susceptible and vaccinated 
individuals. These individuals also recover from meningitis at a rate γ2 and may 
transition to the recovered state at a rate δ2 , while some individuals may die from 
meningitis at a rate μ.

The coinfected individuals, Ipm(t) , represent those who are infected with both 
pneumonia and meningitis. The dynamics of this group are influenced by the 
transmission rates of both pneumonia and meningitis. The rate of change in this 
compartment depends on the interaction between the pneumonia and meningitis 
infected individuals, and the recovery rate from coinfection is denoted by γ3. 
Coinfected individuals also transition to the recovered state at a rate defined by δ1  
and δ2, and some may die due to the complications of having both infections.
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The recovered individuals, R(t), represent those who have recovered from 
pneumonia, meningitis, or coinfection. Their rate of recovery is governed by 
the recovery rates γ1, 

γ2  and γ3, corresponding to pneumonia, meningitis, and 
coinfection recovery, respectively. However, these individuals can be removed 
from the recovered group due to natural deaths or loss of immunity, as modeled by 
the natural death rate μ and the immunity loss rate θ.

The system of differential equations describing these dynamics is given by:

where the parameters are defined as follows:

(σ3 =σ1 + σ2,σ4 = σ2 (Im + Ipm),σ5 = σ1 (Ip + Ipm) 
The mathematical model proposed in this study aims to capture the transmission 

dynamics of pneumonia and meningitis coinfection, with a particular focus on the 
role of vaccination as a public health intervention. To keep the model tractable while 
still maintaining its ability to reflect real-world scenarios, several assumptions have 
been made which include the following:

The population is homogeneous, with equal contact rates between individuals.
Vaccination is modeled as a constant rate, affecting the overall population 

without individual-level variation.
No cross-protection is assumed between pneumonia and meningitis.
Vaccine effectiveness is constant across the entire population.
These assumptions balance the need for simplicity and computational feasibility 

with the necessity of accurately representing the underlying epidemiological 
processes.

2.1. Qualitative Analysis
2.1.1. Invariant Region
The invariant region defines the domain where the solutions of the coinfection 

model are both biologically and mathematically valid. It is essential to demonstrate 
that the region Ω, where the model is feasible, remains positively invariant for all  
t > 0. This ensures that the system described by equation (1) is well-posed.
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Theorem 1.  The region  is positively 
invariant.

Proof. The total population at any time  is defined as:

The rate of change of the total population is given by:

Substituting from equation (1), we get:

Integrating this differential equation yields:

where  is a constant of integration.
As , the total population  approaches:

Hence, the feasible region for the solution of the system is within Ω, making the 
region positively invariant and ensuring that the model is biologically meaningful.

2.1.2. Positivity of the Solutions
The positivity of the solutions ensures that all model variables remain non-

negative over time. Since the coinfection model represents human populations, it is 
assumed that all variables and parameters are positive for .

Theorem 2. Given initial conditions , the 
solutions of the system (1) remain positive for all .

Proof. Starting with the first equation in the system (1):

Rewriting, we have:
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Using separation of variables and integrating:

Since , it follows that  for all .
A similar approach can be used for V(t), Ip(t), Im(t), Ipm(t), and R(t), showing that 

all state variables remain positive over time.
Thus, the solutions of the system are positive for all t ≥ 0.
2.2. Disease-Free Equilibrium
The disease-free equilibrium (DFE) of a coinfection model represents the steady-

state solutions when no infections are present in the population. Let E0 denote the 
disease-free equilibrium. Setting Ip(t), Im(t), and Ipm(t), to zero in equation (1) and 
solving for S(t), we obtain:

where

2.2.1. The Effective Reproduction Number
The effective reproduction number, RE, is a critical threshold that determines 

whether an infection can invade and persist in a population in the presence of 
intervention. For this coinfection model, RE is calculated as the dominant eigenvalue 
of the next-generation matrix, defined as:

where ρ is the spectral radius of the matrix product FV-1. The matrices F and V 
are defined as follows:

The next-generation matrix is given by:
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The effective reproduction numbers for pneumonia and meningitis are:

Thus, the overall reproduction number is:

2.2.2. Local Stability of the Disease-Free Equilibrium
Theorem 3.   The disease-free equilibrium (DFE) of the system (1) is locally 

asymptotically stable if  and unstable if .
Proof. The Jacobian matrix at the DFE is given by:

The eigenvalues of this matrix include:

The remaining eigenvalues are determined from the submatrix:

Solving, we find:

Since all coefficients are positive, the roots of the characteristic equation have 
negative real parts, ensuring local stability when .

2.2.3. Global Stability of the Disease-Free Equilibrium
Theorem 4.  The disease-free equilibrium point is globally asymptotically stable 
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if . Otherwise unstable.
Proof. Let  and  denote the Jacobian matrices for the new infection rates  

and net transition rates , evaluated at the disease-free equilibrium 
:

The dynamics of the infected compartments  are bounded by:

where  captures new infections and  transitions between compartments, with:

When the reproduction numbers  and  are below unity, all eigenvalues of 
 have negative real parts. By the comparison principle:

Consequently, the susceptible population  approaches the steady state:

Thus, the disease-free equilibrium  is globally asymptotically stable when 
 and .

2.3. The Endemic Equilibria
The endemic equilibria represent the steady states where one or both infections 

persist in the population. We examine three cases: the pneumonia endemic 
equilibrium, the meningitis endemic equilibrium, and the coexistence equilibrium.

2.3.1. Pneumonia Endemic Equilibrium
The pneumonia endemic equilibrium occurs when pneumonia persists in the 

population ( ), but meningitis infection is absent ( ). Substituting 
 into system (1) and solving, the system reduces to:
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The pneumonia endemic equilibrium is given by ,  
where:

Here,  is obtained numerically or analytically by solving:

2.3.2. Meningitis Endemic Equilibrium
The meningitis endemic equilibrium occurs when meningitis persists in the 

population ( ), but pneumonia infection is absent ( ). Substituting 
 into system (1), the system reduces to:

The meningitis endemic equilibrium is given by ,  
where:

Here,  is obtained numerically or analytically by solving:
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2.3.3. Coexistence Equilibrium
The coexistence equilibrium occurs when both pneumonia and meningitis persist 

in the population ( , ). Solving system (1) with all compartments 
non-zero, the equilibrium is given by , where:

Here, , , and  are obtained by solving the nonlinear system numerically 
or analytically, incorporating interaction terms between pneumonia and meningitis.

2.4. Sensitivity Analysis
In the study of epidemiology, it is critical to identify the factors that significantly 

contribute to disease transmission and prevalence. Sensitivity analysis serves 
as an essential method for assessing how variations in parameters influence the 
dynamics of a disease, enabling the development of targeted strategies to reduce 
both morbidity and mortality.

To evaluate the impact of parameters on the outcomes of the model, sensitivity 
indices are employed. These indices provide a measure of how a relative change 
in a parameter translates into a relative change in a state variable. The normalized 
forward sensitivity index is particularly useful in this context, as it quantifies the 
proportional effect of parameter variations on a given variable.

If the state variable is a differentiable function of the parameter, the sensitivity 
index can be calculated using partial derivatives. Specifically, the normalized 
forward sensitivity index of a variable  with respect to a parameter  is defined as:

where  represents any of the fundamental parameters in the model. This formulation 
allows researchers to systematically determine the relative importance of different 
parameters, providing valuable insights into the dynamics and control of the disease.

3. Numerical Simulations
This section presents the numerical simulation of the pneumonia-meningitis 

co-infection model, utilizing the baseline parameter values outlined in Table 1. 
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Simulations were performed and visualized over time (in days) using MATLAB, 
with the resulting plots displayed in Figures 1 – 6.

The initial conditions for the pneumonia and meningitis coinfection model are 
obtained as follows: The initial number of susceptible individuals is taken to be 

. The initial number of vaccinated individuals is . The 
initial number of individuals infected with pneumonia is . The initial 
number of individuals infected with meningitis is . The initial number 
of individuals coinfected with both pneumonia and meningitis is . 
The initial number of recovered individuals is .

Table 1. Parameters Description and Values Used in the Simulation Model
Parameters Description Value Source

Proportion not covered by the 
vaccine 0.002 Tilahun et al. (2017)

Rate of immunity loss among re-
covered individuals 0.0241/day Kizito and Tumwiine 

(2018)
Waning rate 0.0025/day Tilahun et al. (2017)

Contact rate: pneumonia-infected 
and susceptible 0.007 – 0.6 Konstatin (2016)

Contact rate: meningitis-infected 
and susceptible 0.9 Fresnadillo et al. (2013)

Disease-induced death rate: 
pneumonia 0.006 – 0.5 Tilahun (2019)

Disease-induced death rate: 
meningitis 0.002 – 0.2 Tilahun (2019)

Recovery rate: pneumonia 0.9 Tilahun (2019)

Recovery rate: meningitis 0.8 Tilahun (2019)

Recovery rate: coinfection 0.1 Tilahun et al. (2017)

Proportion vaccinated against 
one or both diseases 0.02 Swai et al. (2021)

Vaccination rate 0.3 Swai et al. (2021)

Natural death rate 4.566e-6 Tilahun et al. (2017)

Birth rate 150 Assumed

The numerical simulation of the effect of vaccination on the population dynam-
ics is analysed using the baseline values given in Table 1. The numerical simula-
tion are done and plotted against time (days) using MATLAB and the results are 
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shown in Figures 1 – 6. Figures 1 – 6 illustrates the impact of varying levels of 
vaccination effectiveness on the dynamics of a pneumonia-meningitis coinfection 
model over a period of 150 days. The figure compares scenarios with no vaccina-
tion, slightly effective vaccination (30% compliance), moderately effective vacci-
nation (50% compliance), and highly effective vaccination (100% compliance). It 
demonstrates how these different levels of vaccination compliance affect the num-
ber of susceptible individuals (Figure 1), vaccinated individuals (Figure 2), pneu-
monia-infected individuals (Figure 3), meningitis-infected individuals (Figure 4),  
coinfected individuals (Figure 5), and recovered individuals (Figure 6). 
As shown in Figure 1, the number of susceptible individuals decreases over time 
across all levels of vaccination effectiveness. Without any vaccination (denoted by 
dots), the decline in susceptible individuals is the least steep. The highly effective 
strategy (100% compliance) demonstrates the steepest decline. However, slightly 
effective (30% compliance) and moderately effective (50% compliance) strategies 
also show significant reductions, indicating a gradient effect of vaccination effec-
tiveness on reducing the number of susceptible individuals.

Figure 2 displays the increase in vaccinated individuals over time. The graph 
shows that with higher compliance to vaccination (30%, 50%, and 100% effec-
tiveness), the number of vaccinated individuals increases significantly compared 
to no vaccination. The highly effective strategy (100% compliance) results in 
the highest number of vaccinated individuals. Interestingly, the slightly effective 
strategy shows a quicker initial increase compared to the moderately effective 
strategy. This might be due to a higher initial vaccination uptake in the slightly 
effective scenario, which could be attributed to increased public awareness or 
access to vaccines.

As displayed in Figure 3, the number of pneumonia-infected individuals de-
creases over time. The graph shows that with no vaccination (denoted by dots), the 
reduction is the slowest. Slightly effective (30% compliance) and moderately effec-
tive (50% compliance) vaccination strategies result in a more significant decrease, 
but the highly effective strategy (100% compliance) shows the most substantial 
reduction in pneumonia infections. The slightly effective strategy appears to reduce 
infections quicker than the moderately effective one. This could be due to initial 
variations in how the vaccine impacts different population subsets or logistical dif-
ferences in vaccine distribution and uptake.

Figure 4 shows the trends for meningitis-infected individuals. Similar to pneu-
monia, the graph demonstrates a decrease in meningitis infections over time. The 
reduction is least significant without vaccination. The slightly effective strategy 
initially performs better than the moderately effective one, which might be due to 
similar reasons as discussed for pneumonia: initial vaccine impact variations and 
differences in vaccine distribution logistics. The highly effective strategy (100% 
compliance) leads to the most considerable decline in meningitis infections.
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In Figure 5, the number of coinfected individuals (infected with both pneumo-
nia and meningitis) increases over time across all strategies. The rate of increase is 
highest without any vaccination (denoted by dots) and progressively decreases with 
more effective vaccination strategies. The highly effective strategy (100% compli-
ance) shows the slowest increase. Interestingly, the slightly effective strategy shows 
a lower rate of increase compared to the moderately effective strategy at certain 
points, potentially due to initial population dynamics and vaccine distribution effi-
ciency.

Figure 6 depicts the number of recovered individuals over time. The number 
of recoveries is lowest with no vaccination and increases with the effectiveness 
of the vaccination strategy. However, the difference in the number of recoveries 
among the slightly effective, moderately effective, and highly effective strategies 
is minimal. This small difference indicates that while vaccination does contribute 
to recovery, its impact on this specific outcome is less pronounced compared to its 
effect on reducing the number of susceptible and infected individuals.

The slightly effective strategy shows better initial performance in some graphs 
due to variations in how different population subsets respond to the vaccine. Some 
individuals might have a quicker immune response, leading to an initial rapid de-
cline in infections or an increase in recoveries. Differences in how the vaccine 
is distributed and administered can impact initial results. Efficient distribution in 
the slightly effective scenario might lead to quicker initial results compared to 
a more evenly distributed but slower uptake in the moderately effective scenar-
io. Higher public awareness or better access to vaccines in the slightly effective 
scenario might result in a quicker initial response, leading to better performance 
in the early stages. The small difference in the number of recovered individuals 
among the different vaccination strategies suggests that other factors, such as 
natural recovery rates and the effectiveness of medical treatments, play a signif-
icant role in recovery. To enhance the impact of vaccination on recovery rates, 
it might be necessary to combine vaccination with improved medical treatments 
and supportive care. Improving the logistics of vaccine distribution to ensure a 
more uniform and efficient rollout can help achieve better initial results across all 
effectiveness levels. By addressing any logistical challenges, we can ensure that 
vaccines reach the population more quickly and evenly. Implementing campaigns 
to raise awareness about the importance of vaccination can increase uptake and 
compliance, improving overall effectiveness. These campaigns can educate the 
public on the benefits of vaccination and encourage more people to get vaccinated. 
Regularly monitoring how different population subsets respond to the vaccine can help 
adjust strategies to maximize effectiveness. This monitoring can identify which groups 
are responding well and which may need additional support or different strategies. 
To enhance the impact of vaccination on recovery rates, it is important to also focus on 
improving medical treatments and supportive care for infected individuals. Combin-
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ing vaccination with better medical care can ensure that those who contract the disease 
receive the best possible treatment, further reducing the overall impact of the infection. 
Despite some initial better performance in the slightly effective strategy, the highly 
effective vaccination strategy (100% compliance) remains the best approach in the 
long run. It results in the steepest decline in susceptible and infected individuals 
and the highest number of vaccinated individuals. While the impact on recovered 
individuals is less pronounced, achieving high compliance with vaccination signif-
icantly improves public health outcomes by reducing infection rates and increasing 
recovery in combination with effective medical care.

Figure 1. Simulation effect of vaccination on the susceptible individuals
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Figure 2. Simulation effect of vaccination on the vaccinated individuals

Figure 3. Simulation effect of vaccination on the pneumonia-infected individuals



87

Mathematical Modelling of the Transmission Dynamics...

Figure 4. Simulation effect of vaccination on the meningitis-infected individuals

Figure 5. Simulation effect of vaccination on the co-infected individuals
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Figure 6. Simulation effect of vaccination on the recovered individuals

3.1. Sensitivity Index
The sensitivity indices of the basic reproduction numbers are summarized in 

Tables 2 and 3. Parameters with positive sensitivity indices in Tables 2 and 3 indicate 
that increasing their values, while keeping all other parameters constant, leads to an 
increase in  and , respectively. These parameters play a significant role in 
driving the spread of pneumonia and meningitis infections.

On the other hand, parameters with negative sensitivity indices in Tables 2 and 3 
suggest that increasing their values, while holding other parameters fixed, results in 
a decrease in  and , respectively. These parameters contribute to mitigating 
the transmission of the diseases.

Thus, the key parameters for effective disease control include , , and , 
which have negative sensitivity indices. Parameters such as , , and  exhibit 
the highest sensitivity with positive indices, emphasizing their importance in disease 
propagation. Although  has a negative sensitivity index, biologically, increasing 
its value is recommended as it aids in disease control.
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Table 2. Value of Sensitivity Indices of 
Parameters Sensitivity Index

+1

-0.10207

-1

-0.00168

+0.0020103

+1

-0.89625

-0.01996

Table 3. Value of Sensitivity Indices of 
Parameters Sensitivity Index

+1

-0.10207

-1

-0.00168

+0.0020103

+1

-0.89625

-0.01996

4. Conclusion
This study presents a compartmental deterministic mathematical model of the 

dynamics of pneumonia and meningitis coinfection. It highlights the important 
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role of vaccination in controlling the spread of both diseases within a popula-
tion. Our analysis demonstrates that varying levels of vaccination compliance can 
notably reduce the number of susceptible and infected individuals, with higher 
vaccination compliance leading to the most considerable reductions. Although 
the effect of vaccination on recovery rates is less pronounced, the combination 
of high vaccination coverage and improved medical care offers significant public 
health benefits.

The findings emphasize the need to address logistical challenges, increase pub-
lic awareness, and improve vaccine accessibility to maximize the effectiveness of 
vaccination programs. While slightly effective strategies may show initial success, 
the long-term impact is most pronounced with highly effective vaccination cover-
age. Therefore, to optimize public health outcomes, it is crucial to expand vacci-
nation campaigns, enhance distribution logistics, and integrate vaccination with 
improved medical treatments. Regular monitoring and adjustments to vaccination 
strategies, based on population responses, will further enhance the effectiveness of 
disease control measures.

While the model does not explicitly capture variations in immune responses or 
the logistics of vaccine distribution, it simplifies the vaccine impact by assuming 
that vaccination reduces susceptibility in proportion to the coverage level. The vac-
cine’s effectiveness is modeled as a constant factor in the transition dynamics be-
tween compartments, reflecting an overall reduction in susceptibility and infection. 
Further refinements to the model could include the influence of varying immune 
responses or more detailed vaccine administration strategies, but these aspects were 
not included in the current study.
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