
177

Vocational Education 	 Volume 27, Number 3 – 4, 2025 Професионално образование

SOLVING THE JOB SHOP SCHEDULING
PROBLEM – DIFFERENT TECHNIQUES

AND PROGRAMMING LANGUAGES

Sofoklis Christoforidis
Efstathios Titopoulos

Democritus University of Thrace (Greece)
Boryana Mihaylova

Technical University of Sofia (Bulgaria)
Eleni Kromitoglou

Stergios Intzes
Democritus University of Thrace (Greece)

Abstract. The Job Shop Scheduling Problem (JSSP) is a long-standing
combinatorial optimization problem studied since the 1960s. JSSP is NP-complete,
meaning solutions exist but cannot be guaranteed within polynomial time for
general instances. In this paper we aim to compare some algorithms and techniques
that have been proposed by various researchers. We also present the execution of
these algorithms using two programming languages, python and C#.

Keywords: Genetic Algorithm; Metaheuristics; Constraint Programming

1. Introduction
JSSP is also one of the most challenging problems that researchers have been

trying to solve since the 1960s. Simply put, we can specify the problem as a
scheduling problem with a finite set of tasks, J = {1, 2,…., n} to schedule on a
finite set of machine collections, M = {1, 2,…., m} with each task having a distinct
completion time T = {1,2, …, n}.

Of course, we should clarify that there are various constraints such as an operation
should be processed only after all previous operations related to this object have
been completed and the resource constraint should be applied which states that
each task should be processed on the machine exactly once. The completion time
of a task consisting of many tasks is defined from the processing of the first task to
the completion of the processing of the last task. It should be clarified that the tasks
should not be interrupted, and this time is known as the make-span of the schedule.
This is the time that must be minimized. JSSP is such a complex combinatorial

https://doi.org/10.53656/voc25-3-4-12 Scientific research – ISC “FTMD 2025”
Научни изследвания – МНК „ОТСК 2025“

178

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

problem that for an optimal solution in a reasonable time it is done using heuristic
techniques.

We make a bibliographic survey of the different methods that have been applied
to find a solution to the problem in the following paper. By applying methods that
develop algorithms based on GA, we show applications that have been developed
with the python programming language.

2. The Main Methods for JSSP
The main methods for JSSP are:
l Exact / Mathematical Programming Approaches
– Branch and Bound, Branch and Cut
– Integer Linear Programming (ILP), Constraint Programming (CP)
l Dispatching Rules & Priority Heuristics
– Simple rules like SPT (Shortest Processing Time), LPT, EDD, etc.
– Composite dispatching rules
l Metaheuristics
– Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search (TS), Ant

Colony Optimization (ACO), Particle Swarm Optimization (PSO)
l Hybrid & Memetic Algorithms
– Combinations of GA + Local Search, TS + SA, etc.
l Constraint-Based & AI / Learning Approaches
– Constraint Programming (CP), Reinforcement Learning (RL), Neural

Networks (NNs), Deep Learning
l Decomposition & Relaxation Methods
– Lagrangian Relaxation, Benders Decomposition, Dantzig-Wolfe
Summary Table 1 for the most citation paper for the above methods.
The new literature review for the methods / algorithms which use for the solved

the JSSP:
Exact and constraint programming
– CP/OR integration: (Infantes et al., 2024b, 2024a)
– CP for dynamic dispatch: (C. Zhang et al., 2020)
– Survey: (Cebi et al., 2020a)
– Constraint/AI synthesis (chapter): (Infantes et al., 2024a)

179

Solving the Job Shop Scheduling Problem – Different Techniques and ...

Table 1. Most citation paper for the methods how to solve the JSSP
Method Family Most Cited Works

Exact / ILP / CP (Applegate & Cook, 1991), (Brucker et al., 1994),

Dispatching Rules (Blackstone et al., 1982) (Panwalkar & Iskander, 1977) (Haupt,
1989)

Metaheuristics (Glover, 1989) (Nowicki & Smutnicki, 1996) (Ghedjati, 1999)
(Dorigo & Gambardella, 1997)

Hybrid / Memetic (C. Y. Zhang et al., 2008) (Pezzella et al., 2008) (Lourenco,
1995)

Constraint & AI (Fromherz, 2001) (Baptiste et al., 2001) (Jain & Meeran,
1999) (Mnih et al., 2015)

Decomposition (Fisher, 1981) (Hooker, 2012)

There have been new developments aimed at augmenting classical constraint
programming (CP) and integer programming methods with machine learning
techniques for handling uncertainty. Infantes et al. (2024) presented a deep
reinforcement learning (DRL) framework that is complemented with graph neural
networks (GNNs) for producing robust schedules with uncertain task durations. This
study is notable for a move away from classical methods to robust optimization, in
which uncertainty is specifically defined and addressed.

Dispatching rules and rule learning:
– Learned PDRs: (C. Zhang et al., 2020)
– ANN with dispatching rules: (Sim et al., 2020)
– Real-time rule selection: (Zhao et al., 2023)
– Systematic review of intelligent scheduling (includes rule learning):

(Momenikorbekandi & Kalganova, 2025) (Rihane et al., 2025a)
Classical priority dispatching rules (PDRs) like shortest processing time or most

work remaining have been applied for many years to scheduling in real-time. But
2020 and afterwards consider adaptive and learned dispatching policies as key.
Earlier work by Zhang and Dietterich on a paradigm of reinforcement learning
has been generalized in the latest studies (2020–2023) to learn neural agents that
adaptively choose dispatching rules and beat static heuristics in dynamic shop-floor
settings. They show increasing importance of data-driven heuristics in overcoming
the dichotomy between handcrafted policies and adaptive scheduling.

Metaheuristics:
– Hybrid evolutionary switching (DE/PSO + TS): (Nadia, 2023)
– Comprehensive metaheuristic study: (Benni et al., 2024)
– AI for Flexible JSSP (metaheuristics + learning): (Nadia, 2023)
– Intelligent scheduling review (metaheuristics emphasis): (Momenikorbe

kandi & Kalganova, 2025)

180

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

Metaheuristics continue to dominate the applied JSSP literature, with hybrid
evolutionary and swarm-based algorithms being particularly influential. For
example, hybrid differential evolution and particle swarm optimization methods
with embedded tabu search (2022) have shown strong performance on benchmark
instances. Similarly, multi-objective metaheuristics developed after 2020 address
not only makes pan but also tardiness and energy efficiency, reflecting the multi-
criteria nature of modern manufacturing systems.

Hybrid and memetic algorithms:
– Switching strategy-based hybrid EAs (DE+PSO+TS): (Mahmud et al.,

2022)
– AI for FJSSP (hybrid schemes): (Nadia, 2023)
– Intelligent scheduling systematic review (hybrid focus): (Momenikorbekandi

& Kalganova, 2025)
– Comprehensive metaheuristic study (hybrid comparisons): (Benni et al.,

2024)
The drift toward hybridization can also be found in new work that marries

global search with local fine-tuning(Rego & Duarte, 2009). laid the groundwork
for tabu search/simulated annealing hybrids, and recent works (2021–2023) build
on this by integrating deep learning modules with evolutionary structures. The
resulting hybrids combine the pattern recognition ability of neural models with
metaheuristics’ power to explore, achieving top-performing outcomes on adaptive
JSSP variants.

Learning-based approaches (RL/GNN/transformers):
– DRL+GNN for uncertainty: (Infantes et al., 2024a) (Infantes et al., 2024b)
– PDR via DRL: (C. Zhang et al., 2020)
– Behavioral cloning / attention models for JSSP (2023 chapters referenced

in – CPAIOR context):(Infantes et al., 2024b)
– Review of learning-based methods: (Rihane et al., 2025a) (Rihane et al.,

2025b)
Perhaps the most transformative development since 2020 is the application of

deep reinforcement learning and graph neural networks. (Infantes et al., 2024a)
demonstrated that DRL agents can generalize across problem instances, learning
scheduling policies that adapt to uncertainty. Other works (2021–2023) have
explored curriculum learning, attention-based models, and imitation learning for
dispatching, signalling a paradigm shift toward end-to-end learning systems that
bypass handcrafted heuristics altogether.

Decomposition and relaxation:
– Uncertainty-aware schedules (robust angle; integrates with decomposition

ideas): (Infantes et al., 2024b) (Infantes et al., 2024c)
– Recent reviews touching Lagrangian/Benders in JSSP contexts: (Cebi et

al., 2020b)

181

Solving the Job Shop Scheduling Problem – Different Techniques and ...

– Intelligent scheduling review (2025) with relaxation mentions in industrial
settings: (Momenikorbekandi & Kalganova, 2025)

– Metaheuristic–relaxation hybrids surveyed: (Benni et al., 2024)
The algorithm performed very well, outperforming many previous methods in

the reduction of make-span.
This is a hybrid algorithm that utilizes a global search with genetic crossover and

mutation operators under a CA-like neighborhood. The above operators primarily
fine-tune the order of the operations. Hill-climbing performs a local search to
assign the best machine to each critical operation. This GA-RRHC aspect makes
the formulation compatible with FJSSP instances possessing a lot of flexibility.

CA-like neighborhood facilitates concurrent execution of genetic operations,
thereby advancing enhanced exploration capability for the GA-RRHC. The hill-
climbing yields comparable iteration numbers with other algorithms and is also
straightforward to implement, with a moderate level of complexity. A common data
set suite containing four files that represent a compendium of 101 various problems
was adopted in the numerical experiments involving the GA-RRHC. The outcomes
register enhanced effectiveness relative to contemporary comparison algorithms,
primarily for higher flexibility scenarios.

GA-RRHC presents a new way of achieving neighborhoods like that found in
cultural algorithms that concurrently employ exploration and exploitation methods
in dealing with different task scheduling problems like flow shops, job shop, and
open shop cases.

Future work can be the idea of using a different kind of exploitation approach
such as simulated annealing, so that the local search can become less intensive.
Other types of scaling algorithms can also be attempted for enhancing the
sequences of the operations for solving instances of FJSSP with low flexibility, with
further extension of such a methodology for optimization problems with multiple
objectives.

3. Solving Job-Shop Scheduling Problems by Genetic Algorithm
Genetic Algorithm (GA)-based approach to solving the Job-Shop Scheduling

Problem (JSP), which is known for its complexity due to large combinatorial search
spaces and precedence constraints between machines. Traditional methods like
branch-and-bound struggle with scalability, making GA a promising alternative.

Problem Definition: The JSP involves scheduling N jobs across M machines,
ensuring that:

– No machine processes more than one job at a time.
– No job is processed by multiple machines simultaneously.
– The sequence of machines for each job is predefined.
– Processing times are known.
– Each job must be processed on every machine exactly once.

182

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

Challenges in JSP:
– The problem is harder than the Traveling Salesman Problem (TSP) due to

precedence constraints.
– Traditional methods like branch-and-bound yield good results but require

excessive computation time, even for 10×10 problems.
Genetic Algorithm Approach:
– Representation: Schedules are encoded as individuals in the population.
– Genetic Operators: Custom crossover and mutation operators are designed

to maintain valid schedules.
– Selection Mechanism: The algorithm ensures that the best individuals are

retained across generations.
Experimental Results:
– The GA method is tested on standard JSP benchmarks.
– It demonstrates efficiency in finding near-optimal schedules.
– While GA does not always outperform traditional methods in terms of absolute

best results, it significantly reduces computation time.

4. Realization the algorithm step by step
Define Parameters:
Set up key parameters such as population size (`pop_size`), mutation rate (`p_

mut`), crossover rate (`p_cross`), and max generations (`max_gen`). Initialize `gen
= 0` and `ftmin = 9999`.

Generating Initial Population
Create a population of schedules (`pop_size` individuals), ensuring each job

appears exactly `M` times in sequences of length `N`.
Evaluate Fitness
Each individual’s fitness is determined by the maximum finishing time (`f(Si) =

max(ft)`). Track the best schedule.
Crossover
Perform crossover between selected pairs of individuals, exchanging partial

schedules while maintaining validity.
Mutation
Randomly swap positions of two jobs within individuals based on mutation rate.
Selection
Use elitist selection to keep the best individuals for the next generation.
Iterate Until Convergence
Repeat steps 9.1.1.2-9.1.1.6 until the max generation is reached.
The realization of algorithm in Python

183

Solving the Job Shop Scheduling Problem – Different Techniques and ...

Figure 1. This provides a basic Genetic Algorithm implementation for solving
Job-Shop Scheduling (in Python programming language)

184

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

5. A Search Using Genetic Algorithms and Random-Restart Hill-Climbing
for Flexible Job Shop Scheduling Instances.

This algorithm presents a novel hybrid algorithm called GA-RRHC, which
combines Genetic Algorithms (GA) and Random-Restart Hill-Climbing (RRHC)
to optimize the Flexible Job Shop Scheduling Problem (FJSSP), particularly in
cases with high flexibility—where each operation can be completed by multiple
machines.

Key Contributions
– Hybrid Approach: The GA-RRHC integrates global search using GA operators

with a local search refinement via RRHC.
– Cellular Automata-Inspired Neighbourhood: The algorithm applies a unique

CA-type neighbourhood to enhance the exploration of solutions.
– Machine Assignment Optimization: RRHC is used to refine machine selection

for critical operations, improving scheduling efficiency.
– Competitive Performance: The GA-RRHC was tested against six recent

algorithms using relative percentage deviation (RPD) and Friedman tests,
demonstrating its effectiveness.

Methodology
Encoding & Decoding: Solutions are represented as sequences for operation

scheduling (OS) and machine selection (MS).
l Genetic Operators:
– Crossover: Precedence operation crossover (POX) and job-based crossover

(JBX).
– Mutation: Swap mutation and random position changes for operations.
l Local Search via RRHC:
– Identifies critical operations that define the make span.
– Randomly selects alternative machines to optimize processing time.
Uses restart strategies to escape local minima.
Experimental Results
The GA-RRHC was implemented in python and tested on four widely used

datasets:
– Kacem dataset (high flexibility)
– BRdata dataset (partial flexibility)
– Rdata & Vdata datasets (varying flexibility levels)
The algorithm demonstrated competitive performance, overcoming several

current techniques in make-span reduction.
It is a hybrid algorithm that employs a global search based on genetic crossover

and mutation operators in CA-like neighborhood. The latter mainly adjust the order
of operations. The random-restart hill-climbing performs a local search in an effort
to assign the best machine to each critical operation. By this GA-RRHC feature,
this schedule is highly adaptable to applications with wide flexibility in FJSSP.

185

Solving the Job Shop Scheduling Problem – Different Techniques and ...

CA-like neighborhood permits the simultaneous realization of genetic
operations, promoting the possibility for GA-RRHC exploration. A hill-climbing
method employs a comparable amount of iteration with other methods and is also
easy to code, with a moderate degree of complexity. On the GA-RRHC in the
numerical experiment, four standard datasets with 101 problems each were used.
The result indicates a satisfying outcome compared with the latest comparison
methods, particularly for highly flexible problems.

The GA-RRHC employs a new way of applying CA-like neighborhoods that
concurrently apply the exploration and exploitation operators in order to tackle
scheduling problems for tasks; e.g., the flow shop, job shop, or open shop.

As a future work, we intend to use a different type of exploitation scheme such as
simulated annealing, in order to reduce the complexity of the local search. We can
also attempt other forms of the scaling algorithms in order to find the optimisation
sequences of the operations to address instances of FJSSP with a minimal degree
of flexibility, and also extend this approach for the optimisation problems with
multiple objectives.

186

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

6. The realization of algorithm in Python

Figure 2. Implementing a hybrid algorithm for Flexible Job Shop Scheduling
(in Python programming language)

187

Solving the Job Shop Scheduling Problem – Different Techniques and ...

The hybrid algorithm for Flexible Job Shop Scheduling
Complexity of the Problem
– High Dimensionality: The number of jobs, machines, and operations can lead

to a vast search space, making it computationally intensive to find optimal solutions.
– Dynamic Changes: Real-time changes in job priorities, machine breakdowns,

or new job arrivals can complicate the scheduling process.
Data Accuracy and Availability
– Incomplete Data: Inaccurate or incomplete data about job processing times,

machine capabilities, and maintenance schedules can lead to suboptimal scheduling.
– Data Integration: Integrating data from various sources (e.g., ERP systems,

machine sensors) can be challenging.
Algorithm Parameters
– Tuning Parameters: It is crucial for the algorithm’s performance to find the

right balance for parameters such as population size, mutation rate, and number of
iterations.

– Convergence Issues: The algorithm might converge to local optima rather than
the global optimum, especially if not properly tuned.

Scalability
– Large-Scale Problems: As the number of jobs and machines increases, the

computational resources required to solve the problem also increase.
– Real-Time Scheduling: Implementing the algorithm in a real-time environment

where decisions need to be made quickly can be challenging.
Implementation and Integration
– Software Integration: Integrating the scheduling algorithm with existing

manufacturing execution systems (MES) and other software tools can be complex.
– User Training: Ensuring the staff understands and can effectively use the new

scheduling system is essential for successful implementation.
Flexibility and Adaptability
– Handling Variability: The algorithm must be flexible enough to handle

variability in job types, processing times, and machine availability.
– Customisation: Customising the algorithm to fit specific manufacturing

processes and constraints can be time-consuming.
Performance Metrics
– Multiple Objectives: Balancing multiple objectives, such as minimising

completion time, reducing machine idle time, and maximising throughput, can be
challenging.

– Measuring Success: It is crucial to define and measure the scheduling algorithm’s
success using key performance indicators (KPIs).

Mitigation Strategies
– Robust Data Collection: Ensure accurate and comprehensive data collection

and integration.

188

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

– Parameter Tuning: Use techniques like cross-validation to tune algorithm
parameters.

– Scalability Solutions: Employ parallel computing and cloud-based solutions
to handle large-scale problems.

– User Training: Provide thorough training and support for users to ensure
smooth implementation.

Addressing these challenges requires careful planning, continuous monitoring,
and iterative improvements to ensure the scheduling system meets the needs of
the manufacturing environment. If you have any specific concerns or need further
details, feel free to ask!

7. Conclusions and Future Work
The Job Shop Scheduling Problem (JSSP) remains a bellwether both for theo-

retical developments in combinatorial optimization and for practical breakthroughs
in industrial scheduling. During the past several decades, the research has trans-
formed from exact formulations and hand-designed heuristics to metaheuristics,
hybrids, and, recently, learning-based methods. Each family of methods offers
unique strengths: exact and decomposition approaches offer theoretical tractability
and tight bounds; dispatching rules provide quickness and flexibility; metaheuris-
tics are the workhorse for problems at a large scale; hybrids explore an equilibrium
between investigation and exploitation; and AI-based methods provide adaptability
and universalization across problem instances.

Even with such advances, a series of open problems persist. First, variability in
processing times, machine breakdowns, and stochastic job arrivals is still not ad-
equately addressed in the vast bulk of work driven by benchmarking. Even though
robust optimization and reinforcement learning have shown promise, scalable
schemes that can cope with disruptions at a non-traditional, or at least non-batch,
timescale are still in their infancy. Second, scalability is a key bottleneck. Even the
latest metaheuristics and hybrids are not equipped to cope with very large or very
flexible JSSPs, and learning-based approaches almost always have a great deal of
training data that is not typically available in industrial settings. Third, explainability
is an increasing worry. As deep reinforcement learning and neural models become
mainstream, their “black box” characteristics are a worry for industrial take-up,
where clarity on decisions is as important as solution quality. Finally, benchmark-
ing and reproducibility persist as problems. Whereas classical benchmarks like the
Lawrence and Taillard instances have spurred advances, they no longer fully cap-
ture the complexity of modern manufacturing systems. We require richer, standard-
ized benchmarks that capture uncertainty, multi-objective trade-offs, and dynamic
environments. Looking forward, promising research directions include:

– Integrative frameworks that combine exact relaxations with learning-based
heuristics to balance optimality and scalability.

189

Solving the Job Shop Scheduling Problem – Different Techniques and ...

– Uncertainty-aware scheduling through robust optimization, stochastic pro-
gramming, and reinforcement learning with domain adaptation.

– Explainable AI for scheduling, where interpretable models or hybrid sym-
bolic-neural approaches provide both performance and transparency.

– Next-generation benchmarks and open repositories that reflect industrial
realities and enable fair, reproducible comparisons across methods.

– Cross-domain transfer learning, allowing scheduling policies trained in one
environment to generalize to others with minimal retraining.

Python vs C# for implementing JSSP

Table 2. Comparison between the programming languages Python and C#
Attribute Python C#

Performance
Slower in pure Python; fast with
NumPy, Numba, Cython, or PyPy;
easy to call C/C++ for hot loops

Faster out of the box; strong
JIT; excellent performance
for multi-threaded, SIMD, and
optimized data structures

Ecosystem
Rich scientific stack (NumPy, SciPy,
NetworkX), OR libraries (OR-Tools),
ML (PyTorch, TensorFlow)

Strong enterprise tooling;
decent OR tooling via OR-
Tools .NET, Accord.NET; easier
Windows/desktop integration

Development speed Very high; rapid prototyping; concise
syntax; interactive notebooks

Moderate; more boilerplate;
strong type safety; great
tooling in Visual Studio/Rider

Parallelism

GIL limits threads; good for multi-
processing; easy to offload to
C/Numba; strong support for
distributed via Ray/Dask

True multi-threading;
TPL/async excellent;
predictable performance for
concurrent search (e.g., TS
neighborhoods)

Deployment Simple scripts, containers; ubiquitous
in research; cross-platform

Robust deployment for
services, desktop apps; great
for industrial environments
and Windows ecosystems

Visualization
Matplotlib/Plotly/Seaborn; quick
Gantt, convergence plots; Jupyter for
demos

WPF/WinUI for desktop; web
dashboards with ASP.NET;
charts via third-party libs

ML integration
Best-in-class; seamless for learned
dispatching (RL/GNN); easy
experiment tracking

Possible via ML.NET or interop
with Python; fewer cutting-
edge RL/GNN tools natively

Reproducibility Strong with notebooks, environments,
Docker; easy to share

Strong via solution files, CI/
CD; deterministic builds in
enterprise contexts

190

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

Attribute Python C#

Community &
examples

Massive research codebase and
tutorials for metaheuristics and RL
scheduling

Fewer open JSSP research
repos; more production-
grade patterns and enterprise
support

Cost & licensing Open source; low barriers
Free tooling available;
enterprise IDEs commonly
used

When to choose Python
– Exploration and research: Rapid prototyping of GA/TS/SA/ACO,

benchmarking on OR-Library instances, trying variants (FJSSP, blocking,
stochastic).

– Learning-based methods: DRL/GNN for learned dispatching, policy search,
imitation learning.

– Hybrid pipelines: Glue code around OR-Tools, custom local search in
Numba/Cython, experiment tracking.

– Visualization and reporting: Quick convergence plots, Gantt charts,
notebooks for papers and demos.

When to choose C#
– High-performance production schedulers: Real-time or near-real-time

dispatch, stable services, and operator UIs.
– Concurrency-heavy local search: Parallel neighborhoods for Tabu Search,

large-scale simulation with predictable throughput.
– Integration needs: ERP/MES systems, Windows services, desktop apps, and

secure deployment with mature tooling.
– Maintainability at scale: Strong typing, robust CI/CD, long-term enterprise

support.
Practical architecture suggestions
– Python-first research, C# for production:
– Prototype algorithms in Python (GA/TS/DRL) with clear interfaces and unit

tests.
– Identify hot spots (e.g., move evaluation, neighbourhood generation), then

port those kernels to C# for a production scheduler or expose them via a REST
service.

Shared core in C/C++ for speed:
– Implement core primitives (schedule representation, constraint checks,

incremental move evaluation) in C++.
– Bind to Python via pybind11 for research and to C# via C++/CLI or P/Invoke

for production.

191

Solving the Job Shop Scheduling Problem – Different Techniques and ...

Benchmarking discipline:
– Common instance set: LA, FT, TA, ORB, and modern FJSSP variants.
– Metrics: Makespan, tardiness, stability under dynamic arrivals; runtime

distribution, scalability curves.
– Reproducibility: Fixed seeds, environment capture, per-instance logs,

configuration files.
Hybrid runtime:
– Use Python for offline policy training (RL/GNN), export policies.
– Use C# runtime to apply learned policies in production, with explainability

hooks and guardrails.
On the whole, while no single approach is optimum across all problem situations,

optimization, metaheuristics, and machine learning as a blend is an innovation-rich
area. The future of JSSP is not merely improving solution quality, but also handling
uncertainty, scalability, interpretability, and reproducibility—it is these that will
define the pragmatic implication of scheduling study under smart manufacturing.

REFERENCES
Applegate, D., & Cook, W. (1991). A Computational Study of the Job-Shop

Scheduling Problem. ORSA Journal on Computing, 3(2), 149 – 156.
https://doi.org/10.1287/ijoc.3.2.149.

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-Based Scheduling
(Vol. 39). Springer US. https://doi.org/10.1007/978-1-4615-1479-4,

Benni, R., Umarani, S. R., & Totad, S. (2024). A Comprehensive Study
of Meta-Heuristic Algorithms for Job Shop Scheduling Optimization.
2024 15th International Conference on Computing Communication and
Networking Technologies (ICCCNT), 1 – 10. https://doi.org/10.1109/
ICCCNT61001.2024.10725590.

Blackstone, J. H., Phillips, D. T., & Hogg, G. L. (1982). A state-of-the-art
survey of dispatching rules for manufacturing job shop operations. In-
ternational Journal of Production Research, 20(1), 27 – 45. https://doi.
org/10.1080/00207548208947745.

Brucker, P., Jurisch, B., & Sievers, B. (1994). A branch and bound algorithm
for the job-shop scheduling problem. Discrete Applied Mathematics,
49(1 – 3), 107 – 127. https://doi.org/10.1016/0166-218X(94)90204-6.

Cebi, C., Atac, E., & Sahingoz, O. K. (2020a). Job Shop Scheduling Prob-
lem and Solution Algorithms: A Review. 2020 11th International Con-
ference on Computing, Communication and Networking Technologies
(ICCCNT), 1 – 7. https://doi.org/10.1109/ICCCNT49239.2020.9225581

192

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

Cebi, C., Atac, E., & Sahingoz, O. K. (2020b). Job Shop Scheduling Prob-
lem and Solution Algorithms: A Review. 2020 11th International Con-
ference on Computing, Communication and Networking Technologies
(ICCCNT), 1 – 7. https://doi.org/10.1109/ICCCNT49239.2020.9225581.

Chaouiya, C. (2007). Petri net modelling of biological networks. Briefings
in Bioinformatics, 8(4), 210 – 219.

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A coop-
erative learning approach to the traveling salesman problem. IEEE
Transactions on Evolutionary Computation, 1(1), 53 – 66. https://doi.
org/10.1109/4235.585892.

Fisher, M. L. (1981). The Lagrangian Relaxation Method for Solving Inte-
ger Programming Problems. Management Science, 27(1), 1 – 18. https://
doi.org/10.1287/mnsc.27.1.1

Fromherz, M. P. J. (2001). Constraint-based scheduling. Proceedings of the
2001 American Control Conference. (Cat. No.01CH37148), 4, 3231 –
3244. https://doi.org/10.1109/ACC.2001.946421.

Ghedjati, F. (1999). Genetic algorithms for the job-shop scheduling prob-
lem with unrelated parallel constraints: Heuristic mixing method ma-
chines and precedence. Computers & Industrial Engineering, 37(1 – 2),
39 – 42. https://doi.org/10.1016/S0360-8352(99)00019-4.

Glover, F. (1989). Tabu Search – Part I. ORSA Journal on Computing, 1(3),
190 – 206. https://doi.org/10.1287/ijoc.1.3.190.

Haupt, R. (1989). A survey of priority rule-based scheduling. OR Spektrum,
11(1), 3 – 16. https://doi.org/10.1007/BF01721162.

Hooker, J. N. (2012). Integrated Methods for Optimization (Vol. 170).
Springer US. https://doi.org/10.1007/978-1-4614-1900-6.

Infantes, G., Roussel, S., Pereira, P., Jacquet, A., & Benazera, E. (2024a).
Learning to Solve Job Shop Scheduling under Uncertainty (Version 1).
arXiv. https://doi.org/10.48550/ARXIV.2404.01308.

Infantes, G., Roussel, S., Pereira, P., Jacquet, A., & Benazera, E. (2024b).
Learning to Solve Job Shop Scheduling under Uncertainty (Version 1).
arXiv. https://doi.org/10.48550/ARXIV.2404.01308.

Infantes, G., Roussel, S., Pereira, P., Jacquet, A., & Benazera, E. (2024c).
Learning to Solve Job Shop Scheduling Under Uncertainty. In B. Dilki-
na (Ed.), Integration of Constraint Programming, Artificial Intelligence,
and Operations Research (Vol. 14742, pp. 329 – 345). Springer Nature
Switzerland. https://doi.org/10.1007/978-3-031-60597-0_21.

Jain, A. S., & Meeran, S. (1999). Deterministic job-shop scheduling: Past,
present and future. European Journal of Operational Research, 113(2),
390 – 434. https://doi.org/10.1016/S0377-2217(98)00113-1.

193

Solving the Job Shop Scheduling Problem – Different Techniques and ...

Lourenço, H. R. (1995). Job-shop scheduling: Computational study of lo-
cal search and large-step optimization methods. European Journal of
Operational Research, 83(2), 347 – 364. https://doi.org/10.1016/0377-
2217(95)00012-F.

Mahmud, S., Chakrabortty, R. K., Abbasi, A., & Ryan, M. J. (2022). Switch-
ing strategy-based hybrid evolutionary algorithms for job shop schedul-
ing problems. Journal of Intelligent Manufacturing, 33(7), 1939 – 1966.
https://doi.org/10.1007/s10845-022-01940-1.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Pe-
tersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level con-
trol through deep reinforcement learning. Nature, 518(7540), 529 – 533.
https://doi.org/10.1038/nature14236.

Momenikorbekandi, A., & Kalganova, T. (2025). Intelligent Schedul-
ing Methods for Optimisation of Job Shop Scheduling Problems in the
Manufacturing Sector: A Systematic Review. Electronics, 14(8), 1663.
https://doi.org/10.3390/electronics14081663.

Nadia, L. (2023). Using Artificial Intelligence for Flexible Job Shop Sched-
uling Problem Solving. 2023 Third International Conference on Theo-
retical and Applicative Aspects of Computer Science (ICTAACS), 1 – 9.
https://doi.org/10.1109/ICTAACS60400.2023.10449588.

Nowicki, E., & Smutnicki, C. (1996). A fast tabu search algorithm
for the permutation flow-shop problem. European Journal of Op-
erational Research, 91(1), 160 – 175. https://doi.org/10.1016/0377-
2217(95)00037-2.

Panwalkar, S. S., & Iskander, W. (1977). A Survey of Scheduling Rules. Op-
erations Research, 25(1), 45 – 61. https://doi.org/10.1287/opre.25.1.45.

Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for
the Flexible Job-shop Scheduling Problem. Computers & Operations Re-
search, 35(10), 3202 – 3212. https://doi.org/10.1016/j.cor.2007.02.014.

Rego, C., & Duarte, R. (2009). A filter-and-fan approach to the job shop
scheduling problem. European Journal of Operational Research, 194(3),
650 – 662. https://doi.org/10.1016/j.ejor.2007.12.035.

Rihane, K., Dabah, A., & Aitzai, A. (2025a). Learning-Based Approaches
for Job Shop Scheduling Problems: A Review (Version 1). arXiv. https://
doi.org/10.48550/ARXIV.2505.04246.

Rihane, K., Dabah, A., & Aitzai, A. (2025b). Learning-Based Approaches
for Job Shop Scheduling Problems: A Review (Version 1). arXiv. https://
doi.org/10.48550/ARXIV.2505.04246.

194

Christoforidis, Titopoulos, Mihaylova, Kromitoglou, Intzes

Sim, M. H., Low, M. Y. H., Chong, C. S., & Shakeri, M. (2020). Job Shop
Scheduling Problem Neural Network Solver with Dispatching Rules.
2020 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), 514 – 518. https://doi.org/10.1109/
IEEM45057.2020.9309776.

Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., & Xu, C. (2020). Learn-
ing to Dispatch for Job Shop Scheduling via Deep Reinforcement Learn-
ing (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2010.12367.

Zhang, C. Y., Li, P., Rao, Y., & Guan, Z. (2008). A very fast TS/SA algo-
rithm for the job shop scheduling problem. Computers & Operations
Research, 35(1), 282 – 294. https://doi.org/10.1016/j.cor.2006.02.024.

Zhao, A., Liu, P., Li, Y., Xie, Z., Hu, L., & Li, H. (2023). Real-Time Selec-
tion System of Dispatching Rules for the Job Shop Scheduling Problem.
Machines, 11(10), 921. https://doi.org/10.3390/machines11100921.

 Sofoklis Christoforidis
Democritus University of Thrace

Greece
E-mail: sofoklis9@gmail.com

 Efstathios Titopoulos
Democritus University of Thrace

Greece
E-mail: etitopolus@tu-sofia.bg

 Boryana Mihaylova
WoS Researcher ID: NUQ-0610-2025

Technical University of Sofia
Sofia, Bulgaria

E-mail: bilieva@tu-sofia.bg

 Eleni Kromitoglou
Democritus University of Thrace

Greece
 Stergios Intzes

Democritus University of Thrace
Greece

