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Abstract. The advancement of Information and Communication Technologies
(ICT)inthehealthcare sector presents significant opportunities for the implementation
of Electronic Health Record (EHR) systems. Such systems enable both healthcare
professionals and patients to access medical histories directly, thereby enhancing
transparency and continuity of care. However, the implementation of an EHR
system is a complex undertaking. The chosen implementation strategy plays a
critical role in integrating existing health information systems and ensuring their
interoperability. This paper aims to design and model an integrated information
system for Electronic Health Records in the context of occupational medicine. It
examines best practices adopted globally during the deployment of EHR systems.
We propose a distributed architecture in which employee health data is stored locally
within each organization’s database. A centralized reporting system is introduced
to facilitate access to specific medical record data points as needed. Furthermore,
we advocate for the integration of artificial intelligence into the system to monitor
employee health. This monitoring would leverage both the medical examination
data contained in the EHR and contextual information about the work environment.

Keywords: Interoperability; Semi-distributed architecture; Data quality
management; Artificial intelligence integration; Occupational environment
monitoring

1. Introduction

At present, there is an urgent need to enhance both the quality and efficiency
of healthcare delivery. Achieving these improvements inevitably requires additional
investment, placing significant financial pressure on governments and private
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providers alike. Consequently, cost containment within the health sector has emerged
as a foremost priority. Equally important is the imperative to bolster collaborative
practices among physicians, ensuring that multidisciplinary teams can coordinate
care more effectively and share expertise (Kalra et al., 2012; Smith & Ceusters, n.d.).

Furthermore, the systematic sharing of medical data among the population of
Athens must be addressed without unduly constraining clinical autonomy. Patients and
citizens increasingly demand transparent access to the information contained in their
health records - data that encompass diagnostic procedures, therapeutic interventions,
and proposed care plans. To meet this demand, stakeholders across clinical and
administrative domains should have seamless, geographically unrestricted access to
medical data, thereby promoting continuity of care, informed decision making, and
patient empowerment (Bemmel, 1997).

The implementation of a unified information system for managing electronic health
records (EHRs) presents a transformative opportunity to enhance the operational
efficiency of healthcare professionals while significantly reducing the costs associated
with storing and maintaining patient and citizen health data. Such a system is expected
to mitigate the risks of data loss, ensuring the integrity and continuity of medical records.
Moreover, it facilitates seamless access to patients’ medical histories, not only for the
individuals themselves but also for authorized healthcare providers, thereby promoting
informed clinical decision-making and continuity of care (Chaudhry et al., 2006).

Importantly, the unified EHR system enables the integration of supplementary data
and functionalities that extend beyond conventional patient care. By incorporating
parameters related to the work environment, the system can generate actionable insights
and alerts concerning occupational health risks and broader determinants of well-being.
This capability supports both the monitoring of care quality and the identification of
environmental factors that may adversely affect employee health, thus contributing to a
more holistic and proactive approach to public health management (Hillestad et al., 2005).

Proposed Electronic Health Record System

Integrating independently deployed Electronic Health Record (EHR) platforms
across disparate care providers into a unified, interoperable EHR (NEHR) remains a
formidable undertaking for most advanced healthcare systems (Deutsch et al., 2010). To
inform the design NEHR — given its organizational structure and the capabilities of its
health data communication network — we review the two prevailing EHR architectural
paradigms and propose a hybrid, semi-distributed model that reconciles their respective
merits (Zaied et al., 2016).

Predominant System Architectures

EHR implementations worldwide predominantly adopt one of two architectural
approaches: centralized or distributed. Each paradigm offers distinct advantages and
constraints with respect to scalability, data governance, real-time access, and resilience.
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Under the centralized architecture, all patient records—either in full detail
or as standardized summaries—are replicated to a single, national repository.
Healthcare providers periodically or continuously transmit updates, as exemplified
by Denmark’s batch-oriented uploads (M & Vosegaard, 2008) versus Canada’s
real-time synchronization via the pan-Canadian service. The repository integrates
a comprehensive dataset encompassing demographics, clinical history, laboratory
results, medication regimens, and diagnostic imaging (Cripps et al., n.d.).

Australia’s National Shared Electronic Health Record (NSEHR) similarly
aggregates encounter notes, test results, discharge summaries, referrals, and
prescriptions, with patients controlling supplementary inclusions (e.g., psychiatric
medication records) (Cresswell et al., 2012). England’s Summary Care Record
(SCR), introduced through the National Programme for IT in Health, exemplifies a
more constrained variant: it centrally stores only current medications, allergies, and
adverse reactions for consenting patients.

Distributed Architecture

In the distributed model, each provider retains native custody of its patients’
health data, while a central reference index—often called a Healthcare Information
Broker (HIB) or Health Record Index Service (HRIS)—orchestrates on-demand
retrieval (Daglish & Archer, 2009). The Dutch National EHR employs this schema:
local Health Information Systems maintain full clinical datasets, and the HRIS
resolves lookup requests, authenticates users, and logs access events. Upon patient
presentation, the local system notifies the HRIS of both the encounter and the data’s
storage location; subsequent requests by other clinicians are routed in real time to
the appropriate source repository.

Towards a Semi-Distributed Architecture

While centralized models deliver rapid, uniform access at the expense of single-
point-of-failure risk and complex data governance, purely distributed systems
optimize local control but may suffer latency and coordination overhead. A semi-
distributed approach can balance these trade-offs by maintaining core summaries
centrally for immediate access, while preserving full records at local sites for
detailed queries and offline resilience. The subsequent sections detail this hybrid
model’s design, its alignment with national health system workflows, and its
integration within the extant national communications backbone.

Adopting a semi-distributed architecture minimizes both deployment and
operational expenditures. This model should incorporate an auxiliary database
dedicated to recording workplace environmental measurements, thereby enriching
the health record with contextual data. By integrating these parameters, artificial
intelligence (Al) engines can perform predictive modelling and deliver tailored
health-management recommendations for patients and staff alike. Although Al
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excels at rapid analysis of large-scale datasets and the generation of data-driven
insights, all algorithmic inferences must undergo rigorous clinical validation by
qualified medical professionals.

Moreover, Al techniques offer significant value in systematically classifying
and evaluating heterogeneous data types, strengthening both decision support and
data-governance frameworks. The next chapter explores state-of-the-art methods
for preprocessing and cleansing extensive legacy datasets that predate modern
EHR implementations. Despite these advances, it remains essential to explicitly
define the underlying assumptions, limitations, and validation protocols associated
with Al-based data-quality interventions.

Medical Data Quality and Artificial Intelligence

Data quality (DQ) refers to the fitness of data for its intended use, encompassing
dimensions such as accuracy, completeness, consistency, timeliness, and validity.
High-quality data underpins sound decision making, reliable analytics, and
trustworthy reporting. As organizations amass ever-larger volumes of information,
ensuring that data meet these quality criteria becomes both more critical and more
challenging (Hosseinzadeh et al., 2023) (Rahm & Do, n.d.).

Definition of Data Quality

Data quality is often defined as the degree to which data satisfy the requirements
of their consumers and processes (Balusamy et al., 2021). Core dimensions include:

— Accuracy: the closeness of data values to the real-world entities they describe

— Completeness: the absence of missing or null values where they are expected

— Consistency: uniform representation across datasets and systems

— Timeliness: availability of data within a useful time frame

— Validity: compliance with predefined formats, business rules, and constraints

Importance of Data Quality

High data quality is a prerequisite for effective operations, strategic planning,
and regulatory compliance. In healthcare, for example, erroneous or incomplete
records can lead to misdiagnoses, treatment delays, and compromised patient safety.
In finance, poor data quality can skew risk assessments, distort fraud detection, and
undermine trust with stakeholders. Across sectors, clean—and trustworthy—data
fuel innovation, drive competitive advantage, and reduce the costs associated with
error correction downstream.(Dasu & Johnson, 2003)

Traditional Data Quality Methods

Historically, organizations have relied on a mix of manual review and rule-
based automation to detect and remediate data defects. Manual inspection entrusts
data stewards with the task of auditing records, identifying outliers, and correcting
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anomalies. Rule-based systems apply predefined checks—such as format, range,
and cross-field consistency validations—to flag and often automatically reject
or correct suspicious entries(Batini & Scannapieco, 2016). Common approaches
include:

— Manual review by data stewards

— Format, range, and consistency checks via rules engines

— Deduplication to merge identical or overlapping records

— Standardization to convert data into uniform formats or structures

Limitations of Traditional Approaches

While foundational, these methods exhibit key drawbacks as data scale and
complexity grow. Manual processes become impractical with high-velocity
streams and massive datasets. Different stewards may apply divergent standards,
introducing variability in data correction. Rule-based systems struggle to adapt to
novel error patterns or evolving data schemas and often fail to process unstructured
content such as free-text, images, or sensor feeds. Key limitations include:

— Poor scalability and high labor costs

— Long delays in data availability due to manual bottlenecks

— Inflexibility of static rules toward evolving data landscapes

— Inability to handle unstructured and multimodal data

Towards AI-Driven Data Quality Management

The explosion of data volume, variety, and velocity demands more advanced,
adaptive, and scalable DQ solutions. Artificial intelligence (Al) offers the ability to
learn from historical error patterns, generalize rules dynamically, and process both
structured and unstructured data on a scale. Machine learning models can predict
anomalies, suggest corrections, and even automate end-to-end cleaning workflows
with continually improving accuracy. Embedding Al into DQ processes promises
faster remediation, consistent standards enforcement, and deeper insights into the
root causes of defects.(“Big Data,” 2011; Taleb et al., 2021)

The Artificial Intelligence on Applications in Data Processing

Generative Al — particularly GPT-5 — has been employed extensively in data
processing workflows, encompassing error correction, data validation, metadata
generation, and related operations(Aldoseri et al., 2023; Tang, 2014). Its capabilities
can be organized into five principal functions:

— Error Identification and Correction: GPT-4 performs contextual analysis
of datasets to detect and rectify errors. By interpreting surrounding data patterns, it
furnishes precise corrections that conform to the intended data schema.

— Data Validation: Leveraging predefined standards, GPT-5 validates
incoming data and flags inconsistencies or anomalies. This mechanism is critical
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for maintaining data integrity and ensuring adherence to established quality
benchmarks.

— Metadata Generation and Enrichment: Through semantic comprehension
of document content, GPT-5 automatically generates and enriches metadata
descriptors. The resulting metadata enhances both the organization and retrievability
of large data repositories.

— Text Summarization and Insight Extraction: GPT-5 efficiently condenses
voluminous text collections into concise summaries and extracts salient insights.
This capability streamlines the management and analysis of extensive textual
datasets.

— Natural Language Processing Applications: GPT-5’s advanced NLP
functionality underpins tasks such as sentiment analysis, machine translation, and
automated content creation. These applications exploit its proficiency in navigating
nuanced linguistic structures.

Artificial intelligence (deep learning) in healthcare

Deep learning has rapidly emerged as a transformative force in healthcare,
surpassing other machine learning techniques through its predictive
analytics, capacity to extract high-level features, and ability to process vast
and heterogeneous datasets. Integrated into smartphones, and biomedical
technologies, deep learning leverages five key enablers — big data, GPU-
accelerated computing, advanced algorithms, and domain expertise — to optimize
disease prediction, improve treatment planning, and reduce medical errors.
In medical imaging, deep learning algorithms automatically extract features
from raw data by constructing hierarchical representations, enabling highly
accurate diagnostic outcomes and revolutionizing cloud-based diagnostics.
Beyond imaging, deep learning has demonstrated exceptional performance
in image recognition, natural language processing, and pattern analysis, with
significant applications in conditions such as ophthalmic diseases, Alzheimer’s,
and cancer. Its integration into healthcare systems promises not only enhanced
diagnostic accuracy and personalized care but also operational efficiencies,
such as automating hospital workflows and supporting physicians in focusing
more directly on patient care. As healthcare data grows exponentially, the role
of deep learning in health informatics will be pivotal in advancing disease
prediction, optimizing pharmaceutical prescriptions, and ensuring robust data
governance. With continuous advancements, deep learning is poised to drive
the evolution of healthcare, expanding public data resources, accelerating
drug discovery, and establishing intelligent, transparent, and patient-centered
systems that underpin the future of medical innovation (Grawitch et al., 2007,
Hackney et al., 2021; Liu et al., 2023; Wang & Lin, 2023).
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Table 1. Comparison of deep learning algorithms for healthcare
(Atianashie & Adaobi, 2024)

Algorithm

Architecture

Training procedures

Ability to secure
healthcare data

Convolutional
neural

Uses layers of
convolutional filters to

Requires large,
labelled datasets for

Security can be
enhanced with privacy

networks automatically learn spatial |supervised learning; |preserving techniques
(CNNs) hierarchies of features training involves like federated learning
from input data. backpropagation and|and differential privacy,
gradient descent although CNNs can be
optimizations. vulnerable to adversarial
attacks.
Recurrent Designed to handle Trained using RNNs require robust
neural sequential data by backpropagation encryption mechanisms
networks maintaining a hidden state |through time to secure data during
(RNNs) that captures information | (BPTT), which can |training and inference,
from previous inputs. be computationally |especially since they
intensive due to deal with sequential
vanishing gradient | health data.
issues.
Generative Composed of two neural |Training is GANs can be used
adversarial networks, a generator adversarial, involving |to generate synthetic
networks and a discriminator that  [the minimization data, which is valuable
(GANS) compete against each of losses in both for protecting patient
other, enhancing each networks, which privacy, though they
other’s performance. can be unstable may inadvertently learn
and require careful |sensitive information.
hyperparameter
tuning.
Autoencoders |Consists of an encoder Unsupervised Autoencoders can
that compresses the input |learning method be utilized for data
into a latent space and a |where the anonymization and
decoder that reconstructs |network is trained |feature extraction, but
the input from this to minimize the latent space needs
representation. reconstruction error. |to be secured to prevent
information leakage.
Deep belief Comprises multiple layers |Trained layer DBNs can be combined
networks of stochastic, latent by layer using with encryption
(DBNs) variables, where the unsupervised techniques for secure

top two layers form an
undirected graphical model
and the lower layers are
directed.

learning followed
by finetuning with
supervised learning.

training, but their layered
approach may make
them susceptible to
certain types of attacks.
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Conclusion

This article presents a cost-effective system architecture for the development
of electronic medical records (EMRs) that enhances the monitoring of clinical
examinations for both patients and employees. Leveraging contemporary
technological capabilities, the proposed solution supports the storage, retrieval, and
intelligent utilization of large-scale health and environmental datasets. Through
mobile applications, individuals, whether patients or employees — can access their
personal medical information alongside contextual data related to their occupational
environment. Concurrently, healthcare professionals are granted comprehensive
access to longitudinal health records, enabling them to track clinical trajectories
and respond promptly to emerging health concerns.

The system further integrates artificial intelligence (AI) modules capable of
analyzing both structured and unstructured data, including legacy handwritten
records and distributed electronic repositories. These Al components facilitate rapid
data cleansing, anomaly detection, and inference generation, thereby improving the
accuracy and usability of health information.

By synthesizing clinical and environmental inputs, the system empowers
clinicians to make timely, data-driven decisions while promoting transparency
and patient engagement. The study underscores the transformative potential of Al
in augmenting EMR systems and advancing proactive, personalized healthcare
delivery.

Generative artificial intelligence platforms — epitomized by GPT-5 — offer a
scalable, efficient, and precise solution for data quality management by automating
error detection and correction, enforcing evolving business rules, and enriching
metadata through advanced natural language processing and contextual analysis;
empirical case studies in healthcare and finance demonstrate their ability to enhance
dataset reliability, operational throughput, and decision-making accuracy while
liberating human resources for strategic analytics. Continuous cross-referencing
with external knowledge bases maintains consistency amid shifting data
landscapes, but realizing these benefits demands domain-specific model training,
rigorous validation procedures, seamless integration with existing architectures,
and stringent privacy controls. By transcending the limitations of manual and rule-
based approaches, generative Al not only streamlines complex data processes but
also strengthens governance and accessibility, positioning high-quality, trustworthy
data as the foundation for innovation, regulatory compliance, and sustained
competitive advantage.
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