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Abstract. The advancement of Information and Communication Technologies 
(ICT) in the healthcare sector presents significant opportunities for the implementation 
of Electronic Health Record (EHR) systems. Such systems enable both healthcare 
professionals and patients to access medical histories directly, thereby enhancing 
transparency and continuity of care. However, the implementation of an EHR 
system is a complex undertaking. The chosen implementation strategy plays a 
critical role in integrating existing health information systems and ensuring their 
interoperability. This paper aims to design and model an integrated information 
system for Electronic Health Records in the context of occupational medicine. It 
examines best practices adopted globally during the deployment of EHR systems. 
We propose a distributed architecture in which employee health data is stored locally 
within each organization’s database. A centralized reporting system is introduced 
to facilitate access to specific medical record data points as needed. Furthermore, 
we advocate for the integration of artificial intelligence into the system to monitor 
employee health. This monitoring would leverage both the medical examination 
data contained in the EHR and contextual information about the work environment.

Keywords: Interoperability; Semi-distributed architecture; Data quality 
management; Artificial intelligence integration; Occupational environment 
monitoring

1. Introduction
At present, there is an urgent need to enhance both the quality and efficiency 

of healthcare delivery. Achieving these improvements inevitably requires additional 
investment, placing significant financial pressure on governments and private 
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providers alike. Consequently, cost containment within the health sector has emerged 
as a foremost priority. Equally important is the imperative to bolster collaborative 
practices among physicians, ensuring that multidisciplinary teams can coordinate 
care more effectively and share expertise (Kalra et al., 2012; Smith & Ceusters, n.d.).

Furthermore, the systematic sharing of medical data among the population of 
Athens must be addressed without unduly constraining clinical autonomy. Patients and 
citizens increasingly demand transparent access to the information contained in their 
health records - data that encompass diagnostic procedures, therapeutic interventions, 
and proposed care plans. To meet this demand, stakeholders across clinical and 
administrative domains should have seamless, geographically unrestricted access to 
medical data, thereby promoting continuity of care, informed decision making, and 
patient empowerment (Bemmel, 1997).

The implementation of a unified information system for managing electronic health 
records (EHRs) presents a transformative opportunity to enhance the operational 
efficiency of healthcare professionals while significantly reducing the costs associated 
with storing and maintaining patient and citizen health data. Such a system is expected 
to mitigate the risks of data loss, ensuring the integrity and continuity of medical records. 
Moreover, it facilitates seamless access to patients’ medical histories, not only for the 
individuals themselves but also for authorized healthcare providers, thereby promoting 
informed clinical decision-making and continuity of care (Chaudhry et al., 2006).

Importantly, the unified EHR system enables the integration of supplementary data 
and functionalities that extend beyond conventional patient care. By incorporating 
parameters related to the work environment, the system can generate actionable insights 
and alerts concerning occupational health risks and broader determinants of well-being. 
This capability supports both the monitoring of care quality and the identification of 
environmental factors that may adversely affect employee health, thus contributing to a 
more holistic and proactive approach to public health management (Hillestad et al., 2005).

Proposed Electronic Health Record System
Integrating independently deployed Electronic Health Record (EHR) platforms 

across disparate care providers into a unified, interoperable EHR (NEHR) remains a 
formidable undertaking for most advanced healthcare systems (Deutsch et al., 2010). To 
inform the design NEHR – given its organizational structure and the capabilities of its 
health data communication network – we review the two prevailing EHR architectural 
paradigms and propose a hybrid, semi-distributed model that reconciles their respective 
merits (Zaied et al., 2016).

Predominant System Architectures
EHR implementations worldwide predominantly adopt one of two architectural 

approaches: centralized or distributed. Each paradigm offers distinct advantages and 
constraints with respect to scalability, data governance, real-time access, and resilience.
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Under the centralized architecture, all patient records—either in full detail 
or as standardized summaries—are replicated to a single, national repository. 
Healthcare providers periodically or continuously transmit updates, as exemplified 
by Denmark’s batch-oriented uploads (M & Vosegaard, 2008) versus Canada’s 
real-time synchronization via the pan-Canadian service. The repository integrates 
a comprehensive dataset encompassing demographics, clinical history, laboratory 
results, medication regimens, and diagnostic imaging (Cripps et al., n.d.).

Australia’s National Shared Electronic Health Record (NSEHR) similarly 
aggregates encounter notes, test results, discharge summaries, referrals, and 
prescriptions, with patients controlling supplementary inclusions (e.g., psychiatric 
medication records) (Cresswell et al., 2012). England’s Summary Care Record 
(SCR), introduced through the National Programme for IT in Health, exemplifies a 
more constrained variant: it centrally stores only current medications, allergies, and 
adverse reactions for consenting patients.

Distributed Architecture
In the distributed model, each provider retains native custody of its patients’ 

health data, while a central reference index—often called a Healthcare Information 
Broker (HIB) or Health Record Index Service (HRIS)—orchestrates on-demand 
retrieval (Daglish & Archer, 2009). The Dutch National EHR employs this schema: 
local Health Information Systems maintain full clinical datasets, and the HRIS 
resolves lookup requests, authenticates users, and logs access events. Upon patient 
presentation, the local system notifies the HRIS of both the encounter and the data’s 
storage location; subsequent requests by other clinicians are routed in real time to 
the appropriate source repository.

Towards a Semi-Distributed Architecture
While centralized models deliver rapid, uniform access at the expense of single-

point-of-failure risk and complex data governance, purely distributed systems 
optimize local control but may suffer latency and coordination overhead. A semi-
distributed approach can balance these trade-offs by maintaining core summaries 
centrally for immediate access, while preserving full records at local sites for 
detailed queries and offline resilience. The subsequent sections detail this hybrid 
model’s design, its alignment with national health system workflows, and its 
integration within the extant national communications backbone.

Adopting a semi-distributed architecture minimizes both deployment and 
operational expenditures. This model should incorporate an auxiliary database 
dedicated to recording workplace environmental measurements, thereby enriching 
the health record with contextual data. By integrating these parameters, artificial 
intelligence (AI) engines can perform predictive modelling and deliver tailored 
health-management recommendations for patients and staff alike. Although AI 
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excels at rapid analysis of large-scale datasets and the generation of data-driven 
insights, all algorithmic inferences must undergo rigorous clinical validation by 
qualified medical professionals.

Moreover, AI techniques offer significant value in systematically classifying 
and evaluating heterogeneous data types, strengthening both decision support and 
data-governance frameworks. The next chapter explores state-of-the-art methods 
for preprocessing and cleansing extensive legacy datasets that predate modern 
EHR implementations. Despite these advances, it remains essential to explicitly 
define the underlying assumptions, limitations, and validation protocols associated 
with AI-based data-quality interventions.

Medical Data Quality and Artificial Intelligence 
Data quality (DQ) refers to the fitness of data for its intended use, encompassing 

dimensions such as accuracy, completeness, consistency, timeliness, and validity. 
High-quality data underpins sound decision making, reliable analytics, and 
trustworthy reporting. As organizations amass ever‐larger volumes of information, 
ensuring that data meet these quality criteria becomes both more critical and more 
challenging (Hosseinzadeh et al., 2023) (Rahm & Do, n.d.).

Definition of Data Quality
Data quality is often defined as the degree to which data satisfy the requirements 

of their consumers and processes (Balusamy et al., 2021). Core dimensions include:
– Accuracy: the closeness of data values to the real‐world entities they describe
– Completeness: the absence of missing or null values where they are expected
– Consistency: uniform representation across datasets and systems
– Timeliness: availability of data within a useful time frame
– Validity: compliance with predefined formats, business rules, and constraints

Importance of Data Quality
High data quality is a prerequisite for effective operations, strategic planning, 

and regulatory compliance. In healthcare, for example, erroneous or incomplete 
records can lead to misdiagnoses, treatment delays, and compromised patient safety. 
In finance, poor data quality can skew risk assessments, distort fraud detection, and 
undermine trust with stakeholders. Across sectors, clean—and trustworthy—data 
fuel innovation, drive competitive advantage, and reduce the costs associated with 
error correction downstream.(Dasu & Johnson, 2003)

Traditional Data Quality Methods
Historically, organizations have relied on a mix of manual review and rule‐

based automation to detect and remediate data defects. Manual inspection entrusts 
data stewards with the task of auditing records, identifying outliers, and correcting 
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anomalies. Rule‐based systems apply predefined checks—such as format, range, 
and cross‐field consistency validations—to flag and often automatically reject 
or correct suspicious entries(Batini & Scannapieco, 2016). Common approaches 
include:

– Manual review by data stewards
– Format, range, and consistency checks via rules engines
– Deduplication to merge identical or overlapping records
– Standardization to convert data into uniform formats or structures

Limitations of Traditional Approaches
While foundational, these methods exhibit key drawbacks as data scale and 

complexity grow. Manual processes become impractical with high‐velocity 
streams and massive datasets. Different stewards may apply divergent standards, 
introducing variability in data correction. Rule‐based systems struggle to adapt to 
novel error patterns or evolving data schemas and often fail to process unstructured 
content such as free‐text, images, or sensor feeds. Key limitations include:

– Poor scalability and high labor costs
– Long delays in data availability due to manual bottlenecks
– Inflexibility of static rules toward evolving data landscapes
– Inability to handle unstructured and multimodal data

Towards AI‐Driven Data Quality Management
The explosion of data volume, variety, and velocity demands more advanced, 

adaptive, and scalable DQ solutions. Artificial intelligence (AI) offers the ability to 
learn from historical error patterns, generalize rules dynamically, and process both 
structured and unstructured data on a scale. Machine learning models can predict 
anomalies, suggest corrections, and even automate end-to-end cleaning workflows 
with continually improving accuracy. Embedding AI into DQ processes promises 
faster remediation, consistent standards enforcement, and deeper insights into the 
root causes of defects.(“Big Data,” 2011; Taleb et al., 2021)

The Artificial Intelligence on Applications in Data Processing
Generative AI – particularly GPT-5 – has been employed extensively in data 

processing workflows, encompassing error correction, data validation, metadata 
generation, and related operations(Aldoseri et al., 2023; Tang, 2014). Its capabilities 
can be organized into five principal functions:

– Error Identification and Correction: GPT-4 performs contextual analysis 
of datasets to detect and rectify errors. By interpreting surrounding data patterns, it 
furnishes precise corrections that conform to the intended data schema.

– Data Validation: Leveraging predefined standards, GPT-5 validates 
incoming data and flags inconsistencies or anomalies. This mechanism is critical 
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for maintaining data integrity and ensuring adherence to established quality 
benchmarks.

– Metadata Generation and Enrichment: Through semantic comprehension 
of document content, GPT-5 automatically generates and enriches metadata 
descriptors. The resulting metadata enhances both the organization and retrievability 
of large data repositories.

– Text Summarization and Insight Extraction: GPT-5 efficiently condenses 
voluminous text collections into concise summaries and extracts salient insights. 
This capability streamlines the management and analysis of extensive textual 
datasets.

– Natural Language Processing Applications: GPT-5’s advanced NLP 
functionality underpins tasks such as sentiment analysis, machine translation, and 
automated content creation. These applications exploit its proficiency in navigating 
nuanced linguistic structures.

Artificial intelligence (deep learning) in healthcare
Deep learning has rapidly emerged as a transformative force in healthcare, 

surpassing other machine learning techniques through its predictive 
analytics, capacity to extract high-level features, and ability to process vast 
and heterogeneous datasets. Integrated into smartphones, and biomedical 
technologies, deep learning leverages five key enablers – big data, GPU-
accelerated computing, advanced algorithms, and domain expertise – to optimize 
disease prediction, improve treatment planning, and reduce medical errors. 
In medical imaging, deep learning algorithms automatically extract features 
from raw data by constructing hierarchical representations, enabling highly 
accurate diagnostic outcomes and revolutionizing cloud-based diagnostics. 
Beyond imaging, deep learning has demonstrated exceptional performance 
in image recognition, natural language processing, and pattern analysis, with 
significant applications in conditions such as ophthalmic diseases, Alzheimer’s, 
and cancer. Its integration into healthcare systems promises not only enhanced 
diagnostic accuracy and personalized care but also operational efficiencies, 
such as automating hospital workflows and supporting physicians in focusing 
more directly on patient care. As healthcare data grows exponentially, the role 
of deep learning in health informatics will be pivotal in advancing disease 
prediction, optimizing pharmaceutical prescriptions, and ensuring robust data 
governance. With continuous advancements, deep learning is poised to drive 
the evolution of healthcare, expanding public data resources, accelerating 
drug discovery, and establishing intelligent, transparent, and patient-centered 
systems that underpin the future of medical innovation (Grawitch et al., 2007; 
Hackney et al., 2021; Liu et al., 2023; Wang & Lin, 2023).
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Table 1. Comparison of deep learning algorithms for healthcare  
(Atianashie & Adaobi, 2024)

Algorithm Architecture Training procedures Ability to secure 
healthcare data

Convolutional 
neural 
networks 
(CNNs)

Uses layers of 
convolutional filters to 
automatically learn spatial 
hierarchies of features 
from input data.

Requires large, 
labelled datasets for 
supervised learning; 
training involves 
backpropagation and 
gradient descent 
optimizations.

Security can be 
enhanced with privacy 
preserving techniques 
like federated learning 
and differential privacy, 
although CNNs can be 
vulnerable to adversarial 
attacks.

Recurrent 
neural 
networks 
(RNNs)

Designed to handle 
sequential data by 
maintaining a hidden state 
that captures information 
from previous inputs.

Trained using 
backpropagation 
through time 
(BPTT), which can 
be computationally 
intensive due to 
vanishing gradient 
issues.

RNNs require robust 
encryption mechanisms 
to secure data during 
training and inference, 
especially since they 
deal with sequential 
health data.

Generative
adversarial
networks 
(GANs)

Composed of two neural 
networks, a generator 
and a discriminator that 
compete against each 
other, enhancing each 
other’s performance.

Training is 
adversarial, involving 
the minimization 
of losses in both 
networks, which 
can be unstable 
and require careful 
hyperparameter 
tuning.

GANs can be used 
to generate synthetic 
data, which is valuable 
for protecting patient 
privacy, though they 
may inadvertently learn 
sensitive information.

Autoencoders Consists of an encoder 
that compresses the input 
into a latent space and a 
decoder that reconstructs 
the input from this 
representation.

Unsupervised 
learning method 
where the 
network is trained 
to minimize 
reconstruction error.

Autoencoders can 
be utilized for data 
anonymization and 
feature extraction, but 
the latent space needs 
to be secured to prevent 
information leakage.

Deep belief
networks 
(DBNs)

Comprises multiple layers 
of stochastic, latent 
variables, where the 
top two layers form an 
undirected graphical model 
and the lower layers are 
directed.

Trained layer 
by layer using 
unsupervised 
learning followed 
by finetuning with 
supervised learning.

DBNs can be combined 
with encryption 
techniques for secure 
training, but their layered 
approach may make 
them susceptible to 
certain types of attacks.
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Conclusion
This article presents a cost-effective system architecture for the development 

of electronic medical records (EMRs) that enhances the monitoring of clinical 
examinations for both patients and employees. Leveraging contemporary 
technological capabilities, the proposed solution supports the storage, retrieval, and 
intelligent utilization of large-scale health and environmental datasets. Through 
mobile applications, individuals, whether patients or employees – can access their 
personal medical information alongside contextual data related to their occupational 
environment. Concurrently, healthcare professionals are granted comprehensive 
access to longitudinal health records, enabling them to track clinical trajectories 
and respond promptly to emerging health concerns.

The system further integrates artificial intelligence (AI) modules capable of 
analyzing both structured and unstructured data, including legacy handwritten 
records and distributed electronic repositories. These AI components facilitate rapid 
data cleansing, anomaly detection, and inference generation, thereby improving the 
accuracy and usability of health information. 

By synthesizing clinical and environmental inputs, the system empowers 
clinicians to make timely, data-driven decisions while promoting transparency 
and patient engagement. The study underscores the transformative potential of AI 
in augmenting EMR systems and advancing proactive, personalized healthcare 
delivery.

Generative artificial intelligence platforms – epitomized by GPT-5 – offer a 
scalable, efficient, and precise solution for data quality management by automating 
error detection and correction, enforcing evolving business rules, and enriching 
metadata through advanced natural language processing and contextual analysis; 
empirical case studies in healthcare and finance demonstrate their ability to enhance 
dataset reliability, operational throughput, and decision-making accuracy while 
liberating human resources for strategic analytics. Continuous cross-referencing 
with external knowledge bases maintains consistency amid shifting data 
landscapes, but realizing these benefits demands domain-specific model training, 
rigorous validation procedures, seamless integration with existing architectures, 
and stringent privacy controls. By transcending the limitations of manual and rule-
based approaches, generative AI not only streamlines complex data processes but 
also strengthens governance and accessibility, positioning high-quality, trustworthy 
data as the foundation for innovation, regulatory compliance, and sustained 
competitive advantage.
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