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Abstract. In this study, the Schiff base complex of CoII derived from reaction 
between Benzene-1,2-diamine, Acetophenone, and 1H-Pyrrole-2-carbaldehyde 
have been synthesized. All the complexes have been characterized on the basis of 
elemental analysis and spectral studies. All the complexes are light in color and 
stable to atmosphere. Elemental analysis shows ML2 stoichiometry for the com-
plex. IR spectral data indicates coordination through NH pyrrole and azomethine 
nitrogen groups. Electronic spectral data suggests a polymeric octahedral structure 
for the CoII complex. The structural characterization of Schiff base and cobalt com-
plexes were carried out on the basis of their melting point, solubility, elemental 
analyses, conductivity measurements, FT-IR, 1H NMR, 13C NMR, DEPT 90, and 
HETCOR spectroscopy studies. Molecular geometries, vibrational frequencies, and 
NMR frequencies of the title compounds in the ground state are calculated using the 
Hartree-Fock (HF) and density functional theories (DFT/B3LYP), and GIAO meth-
ods with the 3-21G** basis set and compared with the experimental data. The cal-
culated results show that the optimized geometries can reproduce the crystal struc-
tural parameters, and the theoretical vibrational frequencies show good agreement 
with the experimental values. The calculated Highest Occupied Molecular Orbital 
(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies show that 
charge transfer occurs within the molecule. The geometries and normal modes of 
vibrations obtained from DFT/3-21G** calculations are in good agreement with the 
experimentally observed data. 

Keywords: 1H-Pyrrole-2-carbaldehyde, HETCOR, DEPT 90, DFT/B3LYP, 
13C-13C COSY
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Introduction
The compounds containing azomethine (-C=N-) group are known as Schiff 

bases, are formed by condensation of primary amines with carbonyl compounds 
such as aldehydes or ketones (Royer et al., 2005). Schiff bases are characterized 
by the –N=CH– (imine) group, which is important in elucidating the mechanism 
of transamination and racemization reactions in biological systems (Jaeger et al., 
1979). Literature review shows that Schiff bases show bacteriostatic and bacteri-
cidal activities (Tarafder et al., 2000; Sakiyan et al., 2004) Antibacterial, antifungal, 
antitumor, and anticancer activities have been reported in a number of studies, and 
are active against a wide range of organisms (e.g., C. albicans, E. coli, S. aureus, B. 
polymyxa, and P. viticolaetc.) (Aiad & Negm, 2009a; 2009b; Chohan et al., 2010). 
Schiff based reagents are becoming increasingly important in the pharmaceutical, 
dye (Aksuner et al., 2009) and plastic industries (Gupta et al., 2006), as well as for 
Liquid Crystal Display technology and mechanistic investigations of drugs used 
in pharmacology, biochemistry, and physiology (Pardridge, 2009; Fricker, 2006; 
Chen & Rhodes, 1996). However, despite extensive scientific reports on synthesis, 
characterization, and crystalline structure of the transition metal-salen complexes, 
few reports have been published on the use of salen molecules as ionophoresin 
ion-selective studies (Sadeghi et al., 2006; Fatibello-Filho et al., 2007).

A series of transition metal ions form complexes with schiff bases (Gupta & 
Sutar, 2008; Cozzi, 2004; Chohan et al., 2001), aromatic hydrazones (Sridhar et 
al., 2001; 2002;  Pouralimardan et al., 2007) like o-hydroxy 5-methyl salicyli-
dinehydrazone, 2-hydroxy-4-methylacetophenone phenyl hydrazine, o-hydroxy 
5-methyl acetophenone phenyl hydrazone, o-hydroxy 4-methoxysalicylidine phe-
nyl hydrazone, o-hydroxy 5-methyl salicylidine phenyl hydrazine (Karabatsos & 
Taller, 1963; Garcia-Herbosa et al., 1994; Metwally et al., 2012; Sacconi, 1954) 
hydroxamic acid (Gibson & Magrath, 1969) and α-mercapto-2-amino phenyl ace-
tohydroxamic acid (Rudzka et al., 2005; Gould et al., 1978; Puerta & Cohen, 2002).

In this paper, we have synthesized (N1Z,N2Z)-N1-((1H-Pyrrol-2-yl)methyl-
en)-N2-(1-phenylethylidene)ethane-1,2-diamine (PMPA) chelating agent and used 
to synthesize metal chelates with CoII transition metal (Fig. 1).These metal chelates 
were characterized by analytical, thermal, infrared and 1H NMR, 13C NMR, DEPT 
90, and HETCOR spectroscopy.

Herein, we report the synthesis and molecular structure of LM type of 
[Co(C19H17N3)2]Cl2.

To the best of our knowledge, no theoretical Hartree-Fock (HF) or Density 
Functional Theory (DFT) calculations or detailed Vibrational infrared (IR) and 
NMR analyses have been performed on the molecule structure. 

DFT calculations are known to provide excellent vibrational wave numbers 
scaled to compensate for the approximate treatment of electron correlation, 
for basis set deficiencies and an harmonicity effects (Scott & Radom, 1996; 
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Stephens et al., 1994; Sinha et al., 2004; Halls et al., 2001; Kim & Jordan, 1994). 
DFT is the best method compared to the ab initio method for computation of mo-
lecular structure, vibrational wave number, and energies of molecules (Mole et al., 
1996; Eichkorn et al.,1997). In this work, by using the DFT/B3LYP and GIAO 
methods (Aliev et al., 2009; Cimino et al., 2004; Dybiec & Gryff-Keller, 2009), we 
calculated the vibrational and [1H], [13C], [15N] NMR wave numbers of (N1Z,N2Z)-
N1-((1H-Pyrrol-2-yl)methylen)-N2-(1-phenylethylidene)ethane-1,2-diamine and 
molecular geometric parameters. These calculations are available for providing in-
sight into vibrational spectra and molecular parameters.

 

 

Fig. 1. Chemical structure of compound: (a) (N1Z, N2Z)-N1-((1H-
Pyrrol-2-yl)methylen)-N2-(1-phenylethylidene)ethane-1,2-diamine; (b) 

Ball & Stick models and system adopted in the theoretical study (Nakano 
et al., 1983; Masonjones et al., 2014) for complex [Co(C19H17N3)2]Cl2.2H2O at 

DFT/3-21G** level.
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Calculations were carried out using the GAMESS program (Bode & Gordon, 
1998). The images of the structures and Molecular Orbitals (MOs) were obtained 
using the MOLDEN program (Schaftenaar & Noordik, 2000).

HOMO represents the ability to donate an electron. On the other hand, LUMO 
as an electron acceptor, represents the ability to obtain an electron. The HOMO and 
LUMO energies are calculated by the DFT at 3-21G** method (Scuseria, 1999; 
Zandler & D’Souza, 2006; Zhang & Musgrave, 2007).

Experimental
Materials and methods
All reagents and solvents employed were commercially available and used as 

received without further purification. The FT-IR spectra were recorded from KBr 
pellets in the range of 4000 - 400 cm -1 on a NEXUS 670 spectrometer. The 1H and 
13C NMR, DEPT 90 and HETCOR spectra were measured on an Avance-300 Bruk-
er instrument (300 MHz) in CDCl3/TMS. The C and H microanalyses were carried 
out with a Perkin-Elmer 240 elemental analyzer.

 
Computational method
A careful examination of the structures, computed using different ab initio and 

DFT methods pointed out that theB3LYP method in conjunction with the 3-21G** 
basis set, was an efficient level for performing geometry optimization. Therefore, all 
the molecular structures were optimized with the DFT (B3LYP) levels at the 3-21G** 
basis set (Fig. 2; Table 1). Vibrational frequencies for the optimized molecular struc-
tures of the title compounds were calculated using the DFT/B3LYP method with the 
3-21G** basis set and compared with experimental data (Fig. 3; Table 2).

      Table 1. Spectra 13C NMR compound PMPA

Entry Calculated (ppm) Experimental (ppm) 

13C NMR CH3 CH2 CH C CH3 CH2 CH C

C2B 22 - - - 42.187 - - -

C3D - - 108 - - - 110.089 -

C2D - - 111.8 - - - 110.49 -

C4D - - 118.3 - - - 114.214 -

C2C - - 123.6 - - - 115.48 -
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C5C - - 123.6 - - - 116.527 -

C3C - - 128.6s - - - 116.795 -

C4C - - 128.6 - - - 117.584 -

C3A - - 128.9 - - - 118.79 -

C5A - - 128.9 - - - 120.307 -

C2A - - 129.2 - - - 123.281 -

C6A - - 129.2 - - - 126.885 -

C4A - - 131 - - - 128.354 -

C1D - - - 132.7 - - - 131.06

C1A - - - 134 - - - 134.708

C1C - - - 140 - - - 137.523

C6C - - - 144 - - - 141.432

C1B - - - 165 - - - 146

C5D - - 151 - - - 148.323 -

Table 2.  Theoretically computed energies (a.u.), zero-point vibrational energies 
(kcal mol -1), rotational constants (GHz), entropies (cal mol -1 K -1) (Boyer, 1970) 
for compound PMPA at the B3LYP/3-21G**

Entry

Ea 
(Thermal) CVb Sc

kcal mol-1 cal mol-1 
K-1

cal mol-1 
K-1

Total 205.053 73.327 137.718

Translational 0.889 2.981 42.862

Rotational 0.889 2.981 34.722
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Zero-point correction 0.308687 (Hartree/Particle)

Thermal correction to 
Energy 0.326772

Thermal correction to 
Enthalpy 0.327717

Thermal correction to Gibbs 
Free Energy 0.262283

Sum of electronic and zero-
point Energies 0.609596

Sum of electronic and 
thermal Energies 0.627681

Sum of electronic and 
thermal Enthalpies 0.628625

Sum of electronic and 
thermal Free Energies 0.563191

aEnergy; bConstant Vibration; cStandard.

 

Fig. 2. FT-IR spectrum in (KBr) disk of compound PMPA in the range of 4000-
400 cm -1 on a NEXUS 670 spectrometer

In addition, NMR frequencies for the optimized molecular structures of the title 
compounds were calculated using the DFT/B3LYP methods with the 3-21G**(6D, 
7F) standard basis set, and compared with the experimental data (Xing et al., 2008; 
, Han et al., 2009). All calculations were performed using the Gaussian 03 program 
package on a Windows 7 Ultimate Operating system.
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Synthesis of ligand (N1Z,N2Z)-N1-((1H-pyrrol-2-yl)methylen)-N2-(1-phenyle-
thylidene)ethane-1,2-diamine

(N1Z,N2Z)-N1-((1H-Pyrrol-2-yl)methylen)-N2-(1-phenylethylidene)ethane-1,2 
diamine was synthesized from benzene-1,2-diamine 11.2 g, acetophenone 5 g, and 
1H-Pyrrole-2-carbaldehyde 5.1 g. The reaction mixture was stirred in ethanol (120 
ml) at 90 °C for 24 h and then cooled to room temperature, followed by concen-
trating the resulting mixture to a yellow solid product. Boiling point of the solution 
was measured 79 °C.

[C19H17N3]; IR (KBr, cm -1):
Calcd., 3136.78 (N-H), 2906.63, 2914.98 (=C-H),1647.32 (C=N),881.709, 

961.619, 794.219, 801.525 (C-H, OPP), 3346.43 (C-H, SP 2), 3176.74, 3158.23 (C-
H, SP 3), 1458.21 (C=C), 1548.02, 1647.32, 1755.62 (N-H, C-N);

IR (KBr, cm -1):
Found: 3133.70 m (N-H), 2857.57 w, 2748.89 w (=C-H), 1616.4 s (C=N), 

1030.08 m, 880.0 w, 742.52 m (C-H, OPP), 3084.47 w (C-H, SP 2), 2969.15 w, 
2997.43 w (C-H, SP 3)..168 m (C=C), 1574.77 m (N-H, C-N);

1H NMR (300MHz, CDCl3): δ 9-10 ppm (s, 1 H, NH), 8-9 (s, 1 H, =C-H), 6-8 
(m, 12 H, Ar-H) phenyl group and hetroaromatic groups (Fig. 4);

Fig. 3. FT-IR spectrum in (KBr) disk of complex [Co(C19H17N3)2]Cl2.2H2O in 
the range of 4000-400 cm -1.
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Fig. 4. Chemical structure of compound PMPA with bonds numbered hydrogen 
atoms

13C NMR (300 MHz CDCl3): δ 42 ppm (-CH3), 70-80 (CDCl3), 100-145 (Phenyl 
group and hetroaromatic group), 146 (Ph-C=N), 148 (=C-H);

For C19H17N3
anal. Calcd: C, 79.41; H, 5.96; N, 14.62 %
Found: C, 79.56; H, 5.84; N, 14.64 %
Mol. Wt.: 287.36, found: 287.41 MW
Exact Mass: 287.14 m/e: 287.14 (100.0 %), 288.15 (20.7 %), 289.15 (2.0 %), 

288.14 (1.1 %).

Synthesis of Complex [Co(C19H17N3)2]Cl2.2H2O
The Schiff base PMPA 4.3 g was dissolved in acetonitrile (20 ml) to which 

an acetonitril solution (120 ml) of [CoCl2]6H2O 1.2 g was added by stirring. The 
mixture was stirred for 3 h and then cooled to room temperature followed by con-
centrating the resulting mixture to an orange solid product.

[C38H32CoN6] ; IR ( KBr, cm -1 ):
Found: 3412 m (N-H), 2804.85 s, 2715.05 m (=C-H), 1603.53 m, 1031.37 m, 

967.86 w (C=N), 1085.64 w (C-H, OPP), 3000.74 s (C-H, SP 2), 2914.89 s (C-H, 
SP 3), 1444.98 w, 1501.34 m (N-H, C-N);
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Fig. 5. 1H NMR spectrum (in the magnetic field 300 MHz, solvent CDCl3) of the 
synthesized ligands PMPA in the range δ 6-8 ppm with hydrogen atoms positions

For C38H32CoN6
anal. Calcd: C, 72.26; H, 5.11; Co, 9.33; N, 13.31 %
Found: C, 72.24; H, 5.18; Co, 9.31; N, 13.28 %
Mol. Wt.: 631.63, found: 631.59 MW
Exact Mass: 631.2 m/e: 631.20 (100.0 %), 632.21 (41.5 %), 633.21 (8.4 %), 

632.20 (2.2 %), 634.21 (1.3 %)

Structure elucidation
The structures of both compounds were determined using FT-IR, 1H NMR, and 

13C NMR spectroscopy (including DEPT 90 and HETCOR).

2D[13C],[1H] HETCOR experiments: 2D[13C],[1H] HETCOR spectra were 
measured according to the Van Rossum et al. (1997) method.The pulse sequence 
for the 2D[13C][1H] HETCOR experiment is shown in Fig. 5 .

Results and discussion
IR Spectral Studies
All spectral data were consistent with the assigned structure of the compounds. 

The IR spectra of the ligand give a broad band at 3133.70 cm -1 assignable to ν (NH) 
stretching vibration.
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The ligands show strong band in the 1616.43 cm -1 region due to C=N, which is 
assignable to the Schiff bases appearing in both synthesized ligands Fig. 6.

 

Fig. 6. Chemical structure of compound PMPA with bonds numbered carbon 
atoms

Vibrations due to ν (C=N) and ν (N-H) were found in range of 1616.43 and 
3133.70 cm-1 for ligands, and from 1603.53 and 3412.95 cm -1 for complexes, re-
spectively. This decrease in the frequency of C=N and increase in frequency of N-H 
for the complex indicates complication. From the infrared spectra of complexes, it 
is clear that there is no doublet peak in the region of 700-950 cm -1, which indicates 
the connected nature of the ligand.

As seen in Fig. 7, this band is shifted to a lower frequency in the complex, 
indicating the coordination through azomethine nitrogen. It is found from the IR 
spectra of the complexes that there is a wide and strong band at 620-800 cm -1 for 
(M-N) bonding Fig. 7.
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Fig. 7. 13C NMR spectra (in the magnetic field 300 MHz, solvent chloroform-d) 

related to the structure of the synthesized PMPA

Metal ligand vibrations are generally observed in the far-IR region and usually 
provide valuable information regarding the bonding of ligand to the metal-ions.

These bands will give valuable information regarding bonding modes of ligand 
to metal ions in the complexes.

NMR spectral studies
Further evidence for the formation of target compounds was obtained from the 

1H NMR spectra, which proved to be a diagnostic tool for positional elucidation of 
the proton. Assignments of the signals are based on the chemical shift and intensity 
pattern Fig. 8.

A single peak in the range δ 8.6-8.75 ppm indicated the proton of the CH=N 
group. All the Schiff bases showed negative test for aldehyde, 1H NMR spectra 
exhibited a single peak at near δ 8.4 ppm due to the proton of azomethine (Fig. 9).

The NH peak, which appears as a singlet at δ 10.136 ppm in the ligand is absent 
in all the complexes, which shows the deprotonation of the ligand. The signal at δ 
10.136 ppm is assigned to proton NH of the ligand.

The aromatic protons at δ 6-8 (m, Ar-H) shift down field in the complexes. The 
signal at δ 2.642 (s, 3H) is assigned to the protons of the methyl group of acetophe-
none. Thus, 1H NMR spectral observation supplements the assigned geometry.
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Fig. 8.  13C NMR spectra PMPA (in the magnetic field 300 MHz, solvent CDCl3) 

related to the structue of the synthesized ligand (a) Positions of the carbon ato 
ms in the range δ 110 – 125 ppm; (b) Positions of the carbon atoms in the range δ 

125 – 150 ppm
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Fig. 9. DEPT 90 spectra (in the magnetic field 300 MHz, solvent CDCl3) related 
to the structure (Blinka et al., 1984) of the synthesized logand PMPA: (a) position 

carbon atom C2B; (b) The position disappearance of carbon atoms in Spectra 
DEPT 90
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The characteristic resonance peaks in the 13C NMR spectra of the ligand PMPA, 
are given in the experimental section (Table 3) (Fig. 10). The carbon atoms of the 
phenyl group and hetroaromatic groups appear in the expected aromatic region 
ranging from δ 105-145 ppm.

A peak signal appearing at δ 42.187 ppm is the characteristic of the carbons 
(C2B) of -CH3 (Fig. 11).

Table 3. Theoretical frequencies in cm -1 calculated by DFT/3-21G** method 
for compound PMPA

Observed values DFT/3-21G** Approximate assignments

3133.70 w 3136.78 N-H symmetric stretching

2857.57 w 2906.63
-C=H stretching ( aldehyde )

2748.89 w 2914.98

1616.40 m 1647.32 C=N stretching

- 1054.34 (C-H In plane) stretching

1030.08m 881.709

(C-H OPP) stretching
880.0w 961.619

742.52m 794.219

- 801.525

3084.47 w 3346.43 (C-H SP2) stretching

2969.15 w 3176.74
(C-H SP3) stretching

 2997.43 w 3158.23

1410.68 w 1458.21 C=C bending

- 1548.02

(C-N , N-H)1574.77m 1647.32

- 1755.62
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A sharp signal at δ 148.323 ppm due to the characteristics of =C-H (C5D) carbon 
was in accordance with all the proposed structure (Fig. 12).

In the spectrum of DEPT 90, disappearance of the peak area (C1B) 146 ppm, 
(C6C) 141.432 ppm, (C1C) 137.523 ppm, (C1A) 134.708 ppm, (C1D) 131.060 ppm 
proton is not related to the fourth type of carbon.

In addition, taking the spectrum DEPT 90 of the composition PMPA, the ab-
sence of ethanol solvent was approved (Fig. 13).

An additional confirmation of signal assignments in principal PMPA structures 
was done based on the HETCOR spectrum (Fig. 14a). 1H-13C COSY is the hetero 
nuclear  correlation spectroscopy. This spectrum was interpreted using established 
carbon-proton correlations (Kilpelaeinen, 1994). The cross peaks mean correlation 
between a proton and a carbon (Fig. 14b-d).
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Fig. 10. HETCOR spectra (in the magnetic field 300 MHz, solvent CDCl3) 
compound: (a) PMPA; (b) Position =C-H in the range δ 146-150 ppm; (c) Position 
-CH3 in the range δ 41-43 ppm; (d) In the range δ 95-135 ppm; (e) 13C-13C COSY 
(Correlation Spectroscopy) (Zhang & Brüschweiler, 2004) of compound PMPA in 

the range δ 106-132 ppm; (f) In the range δ 114-124 ppm

 

 

Fig. 11.  Calculated 1H NMR of (N1Z,N2Z)-N1-((1H-Pyrrol-2-yl)methyl-
en)-N2-(1-phenylethylidene)ethane-1,2-diamine PMPA, at the DFT/3-21G**
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Fig. 12. Calculated 13C NMR of (N1Z,N2Z)-N1-((1H-Pyrrol-2-yl)methyl-
en)-N2-(1-phenylethylidene) ethane-1,2-diamine PMPA, at the DFT/3-21G**.

 

Fig. 13. Calculated 15N NMR of (N1Z,N2Z)-N1-((1H-Pyrrol-2-yl)methyl-
en)-N2-(1-phenylethylidene)ethane-1,2-diamine at the DFT/3-21G**
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Fig. 14. The atomic orbital compositions of the frontier molecular orbital for com-

pound PMPA, [C19H17N3] at the DFT/3-21G*

13C-13C COSY (Correlation spectroscopy)
13C-13C COSY is used for clearly indicate correlation with coupled carbons. A 

point of entry into a COSY spectrum is one of the keys to predict information from 
it successfully. Relation of Coupling carbons is determined by cross peaks (corre-
lation peaks) and in the COSY spectrum. In other words, Diagonal peaks by lines 
are coupled to each other.

Figure 14c  indicates that there are correlation peaks between carbon C2C and 
C3,5C as well as between C3,5C and C3,5,2A. This means the C3,5C coupled to C2C and 
C3,5,2A. In Figure 14c indicates that there are correlation peaks between carbon C4A 
and C2A as well as between C2A and C6A. This means the C2A coupled to C4A and C6A.
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Figure 14e,f indicates that there are correlation peaks between carbon C3,5A and 
C2A. Also there are correlation peaks between carbon C4A and C4C as well as between 
C4C and C6A. This means the C4C coupled to C4A and C6A (Simpson, 2012; Rienstra et 
al., 1998; Olsen et al., 2003; Omichinski et al., 1991).

Molecular geometry
The ONIOM (B3LYP/3-21G**) optimized structure of the ligand PMPA and 

the binding energies obtained at the B3LYP/3-21G** level are shown in Table 4.

Table 4. Theoretical and experimental IR spectral data (cm -1) of compound 
PMPA at the DFT/3-21G**

Bond lengths DFTa/3-21G** Bond angles DFT/3-21G**

C1-C2 1.39516 C1-C2-C3 120.00865

C2-C3 1.39471 C2-C3-C4 119.99413

C3-C4 1.39543 C3-C4-C5 119.99402

C4-C5 1.39482 C4-C5-C6 120.00471

C5-C6 1.39514 C5-C6-C1 120.00002

C6-C1 1.39483 C6-C1-C2 119.99843

C6-C12 1.54 C6-C12-C13 109.47238

C12-C13 1.50715 C6-C12-N36 109.4767

C12-N36 1.50713 C13-C12-N36 111.80195

N36-C17 1.54 C12-N36-C17 110.62903

C17-C18 1.39516 N36-C17-C18 119.99721

C18-C20 1.39471 C17-C18-C20 120.00863

C20-C23 1.39543 C18-C20-C23 119.99416

C23-C21 1.39483 C20-C23-C21 119.99394

C21-C19 1.39514 C23-C21-C19 120.00475
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C19-C17 1.39483 C21-C19-C17 120.00001

C18-N35 1.54 C19-C17-N36 120.00431

N35-C27 1.32591 C19-C17-C18 119.99848

C27-C39 1.47 C17-C18-N35 119.98082

C39-C29 1.3918 C20-C18-N35 120.01051

C29-C31 1.40185 C18-N35-C27 122.71598

C31-C30 1.43487 N35-C27-C39 122.72008

C30-N37 1.40175 C27-C39-C29 125.60775

N37-C39 1.3918 C39-C29-C31 108.41367

- - C29-C31-C30 107.18577

- - C31-C30-N37 107.18724

- - C30-N37-C39 108.41766

- - N37-C39-C27 125.59659

a Density Functional Theory

The values of the total energy for PMPA from the DFT and B3LYP calculation 
by employing the 3-21G** basis set are found to be 0.30090845 a.u and 0.262283 
a.u, respectively.

Figures 15 - 17 show comparative representations of theoretical 1H, 13C, and 15N 
NMR spectra, respectively (Mäki et al., 2005).

Vibrational spectroscopy is extensively used in organic chemistry for the identi-
fication of functional groups of organic compounds, the study of molecular confor-
mations, and reaction kinetics etc. The observed and calculated data of the vibra-
tional spectrum of PMPA are given in Table 2. The comparative graph of calculated 
vibrational frequencies by DFT method at 3-21G** basis sets for the PMPA are 
given in Table 2.

Prominent peaks around 3346.43 and 1647.32 cm -1 in the FT-IR spectra are 
attributed to ν N-H and ν C=N modes, respectively. The in plane bending vibration 
and out of plane bending vibrations of the aromatic C–H group are characterized 
by bands in the ranges1196.43, 1169.39, 1162.86, 1158.73, 1157.39, and 1139.7 cm 
-1, respectively.
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 Fig. 15. System adopted in the theoretical study: (a) compound PMPA; (b) Num-
bering compound PMPA using DFT/3-21G** level.

The HOMO-LUMO energy of the PMPA was calculated at the B3LYP/3-21G** 
level and is shown in Fig. 18.

	 HOMO (DFT)	 LUMO (DFT)
	 E HOMO= -14.31737 a.u	 E LUMO = -0.20621 a.u
	 (First excited state)	  (First excited state)

 
ΔE = LUMO-HOMO = 14.11116 a.u

(Ground state)
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Fig. 16. Theoretical calculated infrared spectra (Klähn et al., 2005; Langhoff, 
1996) of compound PMPA, [C19H17N3] (top to bottom, frequencies in cm -1, 

intensities in arbitrary units)

 
Fig. 17. 1H NMR Spectrum (in the magnetic field 300 MHz, solvent chloro-

form-d) of the synthesized compound (Huynh et al., 2005) PMPA

It reveals that the energy gaps reflect the chemical activity of the molecule. 
LUMO as an electron acceptor represents the ability to obtain an electron, while 
HOMO represents the ability to donate an electron.

The LUMO of  nature, (i.e.m heterocyclic ring) is delocalized over the whole 
C-C and C-N bond. This electronic absorption corresponds to the transition from 
the ground to the first excited state, and is mainly described by one electron excita-
tion from the highest occupied molecular or orbital LUMO.
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Conclusions
A series of novel porphyrin hetero-aromatic were synthesized and structurally 

characterized by 1H NMR, 13C NMR, DEPT 90, HETCOR, and IR spectroscopy. The 
hetero-aromatic are coordinated with CoII ion through N-H and azomethine nitrogen.

 
Fig. 19.  Ball & Stick models and system adopted in the study (Nakano et al., 1983; 

Masonjones et al., 2014; Merritt & Murphy 1994) for complex [Co(C19H17N3)2]
Cl2.2H2O at DFT/3-21G**  level, (Solvent Accessible Surface: Translucent)

 

Fig. 20. Ball & Stick models and system adopted in the study for complex 
[Co(C19H17N3)2]Cl2.2H2O at DFT/3-21G** level, (Solvent Accessible Surface: 

Translucent)(Connolly Molecular Surface: Dots) (Connolly, 1993).

The HETCOR spectrum is correlated  13C nuclei with directly attached pro-
tons.  1H-13C coupling is one bond.  If a line does not have cross peak, this means 
that the carbon atom has no attached proton. The structure of (N1Z,N2Z)-N1-((1H-
Pyrrol-2-yl)methylen)-N2-(1-phenylethylidene)ethane-1,2-diamine geometry was 
compared with optimized parameters obtained by means of ab initio calculations with 
the 3-21G** basis set (Figs. 19, 20).

The geometries and normal modes of vibration obtained from DFT/3-21G** calcu-
lations are in good agreement with the experimentally observed data. The HOMO and 
LUMO levels of PMPA have been studied with DFT/3-21G** level. Moreover, NMR 
frequencies for the optimized molecular structures of the title compounds were calculated 
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using these DFT/B3LYP methods with the 3-21G**(6D,7F) standard basis set, and where 
then compared with experimental data.
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