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Abstract. It is claimed that, in certain circumstances, initial-rate method (IRM) has 
advantages over the integral method (IM). But, the IRM will only be effective if the con-
centration change is less than 5 % and the rate constant (k) obtained should be checked 
with IM. There are two main purposes of this research. First, to prove that the claim is 
invalid and the IRM can be used on broader concentration changes. In addition, the rate 
law model used in the claimed is invalid for reaction that takes place in two mechanisms. 
Second, to find a new form of IRM equation, which does not require IM checks. This 
study used the oxidation of formic acid with bromine as a reaction model. The values of 
n and k of this reaction at two mechanisms were determined by the IM, and then by the 
conventional IRM, the method used in the claim, and by the new IRM generated by this 
study. All of k values are compared by using IM as the standard. The proposed method 
is claimed valid if the error percentage of k is less than 5 %. Despite the shortcomings, 
the results show that the new IRM is valid and more reliable. 
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Introduction
The differential method (DM) is believed to be the most reliable one for de-

termining the rate law of a reaction (Laidler, 1987). By this method, the order, n, 
with respect to a particular reactant can be directly determined; not by trial and 
error (as in the integral method, IM). However, the rate, v, is not always propor-
tional to every concentration. The initial rate of a reaction is defined as the rate 
of the reaction at the instant in which the reactants are first mixed. The rate at the 
beginning of a reaction is the most appropriate because at this condition, the rate 
is more linear with concentration. However, the exact initial rate vo, is not easily 
determined. A statistical method has been introduced. As long as the percent error 
of the reaction followed less than 5%, the setting up solution can be considered 
valid. It has been proved that under this condition, in certain circumstances, the 
initial rate method (IRM), has advantages over IM. For example, the IRM can be 
used to simultaneously determine k1 and k2 in a reaction of the type 

2
21 ][][ ooo CkCkv += (1)

Experiments
Учебен експеримент в природните науки
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whereas only k2 by IM. The value of k1 is determined from the intercept and k2 from 
the slope of the linear graph of

][]/[ 21 ooo CkkCv   (2) 

 

(2)

By Eq. (2) and using the diazotization of p-anisidine (initial concentration 3 x 
10-4 M) in aqueous perchloric acid (initial concentration 0.1 M) as the study object, 
the rate equation is

2
0201 ][][ nitriteknitritekvo += (3)

and k1 = 2.60 X 10-5 s-1 and k2 = 5.40 X 10-3 M-1 s-1. (Casado et al., 1986).
There are two problems that arise related to the above statement. First, the recom-

mendation to restrict the percentage of reaction should be followed by a maximum 
of 5%. It is expected that such limitation is caused by the use of graphical method for 
determination. However, graphical method is not recommended for determining the 
order, n, and the rate constant, k, of a reaction (Levine, 2003). The shelf life of a phar-
maceutical product is t0.1. (Tan et al., 1994). It is not enough reason that the shelf life of 
a pharmaceutical product cannot be determined by IRM. A reaction which has the rate 
law such as in Eq. (1) will always take place in two different reaction mechanisms. The 
two mechanisms could take place simultaneously (competing) or in two successive 
steps (consecutive). Thus, the value of the two constants cannot be determined easily.

It is reported that the plot of vo /[C]o versus [C]o gives both of k1 and k2 values si-
multaneously. The plot of [C]-1 against t would overlook k1[C]. This is for sure not an 
overlooking. In IM, the plot of [C]-1 against t will never give the constants for first- or 
other-order of a reaction. Any [C] that appropriate for first-order is not suitable for 
other-orders. By concept, a first-order reaction means, doubling [C] will make a reac-
tion last 21 or 2 times faster and second-order reaction means, doubling [C] will make 
a reaction last 22 or 4 times faster. Thus, it is unlikely that vo for first-order is used for 
second-order reaction (and conversely). In thermodynamic, to determine the absolute 
entropy of a liquid near the absolute temperature 0oK, the curve of Cp/T versus T, 
only use data in the solid phase (Rastogi & Misra, 1980). It is more appropriate to 
use a model of integral equation that can give the two constant values simultaneously 
(Espenson, 1995; Brynildson et al., 1987). However, it is also possible that one found 
that for eq. (1), there is only one order, a non-integer, between 1 and 2, say 1.38. 
Though, the order is usually integers or half-integers (Levine, 2003).

Besides, the term of vo /[C]o in Eq. (1) is basically give the accurate value of k 
for first-order reaction (k1). This is because the accurate value of vo/[C]o is obtained 
if [C]o → 0. This case is similar with the method for the determination molecular 
weight of gases by limiting density (or Regnault) method (Crockford & Nowell, 
1975). The consequences, the term of k2 [C]o is ambiguous. It is correct mathe-
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matically but meaningless from chemical point of view. It is vo/[C]o
2 that gives the 

accurate value k2, that is if [C]o → 0. It stands to reason; the [C]o data used must be 
from the condition of second-order reaction.

Second, the IRM is believed to give the exact n value, but it is uncertain k value. The k 
value obtained must be checked with the exact value obtained from IM (Laidler, 1987). In 
fact, save for zeroth-order reaction, the calculated value of the apparent k obtained by the 
IRM method are always differ with that from IM. There is a missing link here. Both IM 
and IRM are derived from the same rate expression. Therefore, it is unlikely that a k value 
obtained from IRM (and then given the notation kIRM) at a certain condition, is uncertain. It 
is expected just caused by experimental technique and/or mathematical reasoning. How-
ever, IM itself is impractical in some aspects. The true n can only be determined by trial 
and error, using some integral equations to find the best fit equation.

In continuation of our previous reports in the field of chemical kinetics (Patiha & Fir-
daus, 2016; Firdaus & Patiha, 2017), we discuss here an improved technique for the initial 
rate method. Based on the above statement, there are two goals of this research. The first 
goal is to prove that, there is no need in initial rate method to restrict the percentage of 
reactions followed to a maximum of 5%. Also, to provide evidence that the CM (Casado 
Method), the method used as reported by Casado et al. (1986), cannot be used to simulta-
neously determine the two constants of the reaction that takes place in two mechanisms. 
The second is to introduce an alternative IRM model, a valid and reliable method to deter-
mine the correct order and the accurate value of k and no need for IM checks.

Methodology
The two goals will be confirmed by using the oxidation of formic acid by bro-

mine as the model.
 HCOOH + Br2 → CO2  + 2Br + 2H+ (4)

At room temperature, this reaction is believed to take place by the following 
reaction mechanism {Hodgson et al., 1998):

                                                              k1   HHCOOHCOOH   
                                                              k-1           

                                                              k2 
  BrHCOBrHCOO 222             

 

 

(5) 

 

(5)

At first sight, the reaction is of the second order. But in highly acidic media, 
such as in the presence of HClO4, the reaction is found to be of the first-order with 
respect to [Br2]:

][
]][[/][ 2


H

BrHCOOHkdtHCOOHd  (6) 

 

(6)
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Actually, by the steady-states approximation, its rate law is

][])[/(
]][[/][
221

21

BrHkk
BrHCOOHkdtHCOOHd


 


 
(7) 

 

(7)

In an excessive of [HCOOH], the rate law of the reaction is 

][][/][ 2
5.0' BrHCOOHkdtHCOOHd   (8) 

 

(8)

The reaction is halved-order relating to [HCOOH] and first-order with regard to 
[Br2] (Patiha & Firdaus, 2016).

Theoretically, when the initial [Br2]o is slightly greater than (k-1/k2)[H
+], at the 

beginning starting point, the reaction is zeroth-order relating to [Br2] and, end be-
fore the final stage, becomes first-order. The first step of Eq. (5) takes place very 
fast and thus therefore (k-1/k2)[H

+] >> [Br2], and the reaction is first-order relating 
to [Br2]. Because this step is reversible, then after a while, [Br2] will be higher 
than (k-1/k2)[H

+], and the reaction becomes zeroth-order. However, it is also pos-
sible that at equilibrium, [HCOOH]eq = [Br2]eq and the reaction becomes one and 
halved-order; Eq. (8). However, the reaction is always first-order, whenever at the 
early stage, [Br2]o is lower than (k-1/k2)[H

+]. Thus, the reaction will take place in 
two different mechanisms. For a rate law with a summation, there are two possible 
reaction types; competing or consecutive. Since this reaction is consecutive, the 
initial rate law of the reaction is

vo = k1 [Ao] + k2 (9)

The k1 value can be calculated from the slope and k2 from the intercept of the 
linear plot of vo versus [Ao]. The kinetics of the reaction is followed by monitoring 
the decrease of [Br2] at 400 (ε = 160 M-1 cm-1) nm and room temperature. The re-
quired time each Br2 reacts by 10% (or constant of fraction-left = β = 90%) are then 
recorded.

The data were obtained from a single run for each experiment which was taken 
at the same β, and the observed value at the end of one period is regarded as the 
initial value for a new interval. The difference between each pair was divided with 
the time difference, and denote as vo. The data (from the two conditions) and their 
setting are depicted in Tables 1 and 2.

The data in Tables 1 and 2. will be analyzed using the integral equation of:

tkAA Ao =− ][][  for n=0 (10)

tkAA Ao 5.0][][ 5.05.0 −=  for n=0,5 (11)
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tkA
A

A
o

][
][ln  for n=1 (12) 

 

 for n=1 (12)

tkAA Ao 5.0][][ 5.05.0 += −−    for n=1,5 (13)

tkAA Ao += −− 11 ][][   for n=2 (14)

Table 1. The data and setting of Br2 absorbance, A, in oxidation of formic acid 
by bromine at early-stage

No.
Data

Δt/s
Data Setting

t/s A Ao A (Ao-A)/Δt = vo

0. 0 0.267 15 0.267 0.240 1.80x10-3

1. 15 0.240 15 0.240 0.216 1.60x10-3

2. 30 0.216 14 0.216 0.194 1.57x10-3

3. 44 0.194 15 0.194 0.175 1.27x10-3

4. 59 0.175 16 0.175 0.157 1.13x10-3

5. 75 0.157 15 0.157 0.141 1.07x10-3

6. 90 0.141 0.141

Table 2. The data and setting of Br2 absorbance, A, in oxidation of formic acid 
by bromine at near-end

No.
Data

Δt/s
Data Setting

t/s A Ao A (Ao-A)/Δt = vo

0. 308 0.050 50 0.050 0.045 1.00x10-4

1. 358 0.045 40 0.045 0.041 1.00x10-4

2. 398 0.041 41 0.041 0.037 0.98x10-4

3. 439 0.037 39 0.037 0.033 1.03x10-4

4. 478 0.033 30 0.033 0.030 1.00x10-4

5. 508 0.030 30 0.030 0.027 1.00x10-4

6. 538 0.027 0.027

The true order n and the accurate value of kA is that from the equation with re-
gression coefficient closer to ± 1.0000. The values obtained are used as the stand-
ard.

The data is then analyzed with conventional IRM equation:
n

oIRMo Akv ][= (15)

where vo, kIRM, and n are the initial rate, the rate constant (for IRM), and the reaction 
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order respectively. From the slope, the reaction order, n, can be determined and the 
rate constant k can be obtained from the intercept of a straight line of double-loga-
rithmic plot of log vo versus log [Ao].

]log[loglog oIRMo Ankv +=  

The data is also analyzed by Eq. (9) and the equation that will be introduced. A 
method is claimed valid if, relative to the standard (IM), its error percentage (EP) 
of kA is less than 5%.

The first goal
If an experiment is done in a single run and each observation is taken at constant 

fraction-left:
β = [A]/[Ao] (17)

the time, ti, needed in each observation is:

  tt ni
i

)1)(1()( 
   (18) 

 

(18)

where tβ-i, β, and tβ are the interval-time, fraction-left, and the first interval-time, 
respectively (Patiha, 2011). If the initial observation is [Ao] then [A1] = β[Ao], [A2] 
= β2[Ao], or [Ai =  β

i[Ao].
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Based on the basic of initial rate concept (the rate of the very beginning of a reaction), 

the example of the effect of changing the fraction reacted on the value of kA will be given 

from the initial rate of ([Ao] - [A1]) and ([Ao] - [A2]). 

From Eq. (18): tβ-1 = tβ = t1 and   tβ-2 = β(1-n)tβ; then by Eq. (20), for ([Ao] - [A1]): 
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Based on the basic of initial rate concept (the rate of the very beginning of a 
reaction), the example of the effect of changing the fraction reacted on the value of 
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As an example, for zeroth-order reaction: Eq. (24) becomes 
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Comparing Eq. (25) with Eq. (26) gives kA-2 = kA-1. For zeroth-order reaction, there is 

no influence in the changing of the amount fraction reacted. That is not so for first-order 

reaction. But, both values are comparable and by Eq. (18), directly proportional to the 

fraction-reacted (= 1- β) and inversely to the time. This fact is then used to formulate a new 

model of IRM which is need no IM checks. 

The validity of Eq. (9) will also be tested using the combined data of first- and zeroth-

order (Tables 1 and 2). The equation is invalid if the EP of k1 and k2 values with that obtained 

from IM is higher than 5%. 
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tβ-2 = tβ (1+ β
(1-n)) (23)

Inserting Eq. (23) into Eq. (22), after some steps gives

8 
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As an example, for zeroth-order reaction: Eq. (24) becomes 
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Comparing Eq. (25) with Eq. (26) gives kA-2 = kA-1. For zeroth-order reaction, there is 

no influence in the changing of the amount fraction reacted. That is not so for first-order 

reaction. But, both values are comparable and by Eq. (18), directly proportional to the 

fraction-reacted (= 1- β) and inversely to the time. This fact is then used to formulate a new 

model of IRM which is need no IM checks. 

The validity of Eq. (9) will also be tested using the combined data of first- and zeroth-

order (Tables 1 and 2). The equation is invalid if the EP of k1 and k2 values with that obtained 

from IM is higher than 5%. 
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then used to formulate a new model of IRM which is need no IM checks.

The validity of Eq. (9) will also be tested using the combined data of first- and 
zeroth-order (Tables 1 and 2). The equation is invalid if the EP of k1 and k2 values 
with that obtained from IM is higher than 5%.

The second goal: the new method (NM)
Based on the previous discussion, there are three factors that affect the value of k 

and cause it different from IM: the fraction-reacted (= 1- β) the time, and the gener-
al form of IM. Because the time variable is already included in vo, the time factor is 
excluded. So, if the apparent rate constant for initial rate is given the symbol of kIRM 
, to get the real value of kA, kIRM  must be divided by (1-β) and crossed with general 
form of IM, F(β). This is given in the following equation: 
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The first expression on the right side of Eq. (27) is the correction factor (CF) to 
obtain kA from kIRM . Conversely, the first expression on the right side of eq. (28) is 
the CF to obtain kIRM from kA .

The integrated form of F(β) is obtained the following way. Generally, if, in a 
homogeneous reaction, 

aA + …..→ pS + ….. (29)
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the concentration of reactant A is made much less than the concentration of other 
species, the rate v at time t is experimentally found to be 

v = - 1/a d[A]/dt = k [A]n (30)

vA =- d[A]/dt = kA [A]n (31)

Dividing Eq. (31) with [Ao] gives

10 
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The general integral of the term in the left side of Eq. (34) is introduced as F (β) or  
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The difference between the IRM method and NM is in the determination of the rate 

constant. The constant for NM is determined by variance analysis. The value obtained is then 

multiplied with their corresponding CF (Eq. (36) or Eq. (37)): 
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The difference between the IRM method and NM is in the determination of the 
rate constant. The constant for NM is determined by variance analysis. The value 
obtained is then multiplied with their corresponding CF (Eq. (36) or Eq. (37)):

kA  =  kNM    for n = 0       (38)or,
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In this study (β) = 0.9. Because the unit in both Table 1 and Table 2 is in absorb-
ance then, in the unit of M (molarity), Eq. (38) becomes

kA  =  kNM /160 = kNM  6.25x10-3 M s-1   for n = 0 (40)

and Eq. (39) becomes

1
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9.0ln 

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 skk NMA = kNM  x 1.0536 s-1         for n = 1

 

(41) 

 

(41)

 The NM is claimed valid if the EP of kA values is lower than 5% and reliable if 
its EP is lower than other methods.

Description
Before entering the discussion, the following definitions are required. The initial rate 

method is the rate that depends on the initial concentration of the reagent. The conven-
tional initial rate method (IRM) is the method that using the plot of log initial rate versus 
initial concentration for the determination of n and k or by using Eq. (16). The CM is the 
method used in the main reference. The new method (NM) is the method that using cor-
rection factor, Eq. (38) or Eq. (39) in the calculation. This method uses variance analy-
sis for the determination of n and k. The true order is that with lower deviation standard.

The results of all calculations are presented in Tables 3 and 4. In all tables, the 
notation r is the regression coefficient and χσn is the deviation standard for variance 
analysis which is introduced as NM.

Table 3. The results of data analysis of Table 1
A B  r n CF/ s-1 k1/ s-1 E P / % k2 / Ms-1 E P / %

IM

0.01127 1.31x10-3 0.99606 0
0.51184 -1.57x10-3 -0.99931 0.5

-2.17x10-3 -7.08x10-3 -0.99986 1  7.08x10-3

1.90817 8.28x10-3 0.99950 1.5
3.49182 3.89x10-2 0.99763 2 -

IRM -2.14404 1.03923 0.98096 ≈1 1.0536 7.56x10-3 6.78
CM -4.38x10-3 6.97x10-3 0.98012 1.0536 7.34x10-3 3.67

NM
ẍ χσn

1.41x10-3 2.67x10-4 0
6.75x10-3 2.61x10-4 1 1.0536 7.11x10-3 0.42

There are two interesting points in Table 3. First, IM, IRM, and NM, show that, 
when the initial [Br2]o is greater than (k-1/k2)[H

+], the reaction is of the first-order with 
respect to Br2. By IM, the reaction is first-order (its regression coefficient is higher than 
other-order) with k1 = 7.08x10-3M s-1. .By IRM, the order is 1.03923 ≈ 1 = first-order. By 
NM, it is also first-order (lower deviation standard) with k1 = 7.11x10-3M s-1.

Second, by IRM, it is just assumed as first-order. This is because nearer to 1.00 
with k1 = 7.56x10-3M s-1. By CM, there are two possible values of k, but the first is 
meaningless because k must have positive value. Then, by Eq. (9), the reaction is of 
the first-order with respect to Br2 with k1 = 7.34x10-3M s-1.
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Table 4. The results of data analysis of Table 2.
A B  r n CF k1/ s-1 E P / % k2 / Ms-1 E P / %

IM

-2.56x10-5 1.00x10-4 0.99998 0 6.25x10-3 6.25x10-7

0.23788 -2.78x10-4 -0.99843 0.5
0.22621 -2.65x10-4 -0.99922 1 -
4.27148 7.56x10-3 0.99370 1.5

17.25431 8.13x10-2 0.98898
IRM -4.01854 -0.01361 -0.16395 ≈0 6.25x10-3 5.99x10-7 4.16
CM 1.02x10-4 -3.68x10-5 -0.17197 6.25x10-3 6.38x10-7 6.38x10-7 2.08

NM
ẍ χσn

1.00x10-4 1.46x10-6 0 6.25x10-3 6.25x10-7 0
2.63x10-3 4.65x10-4 1

There are also two interesting points in Table 4. First, IM, IRM, and NM, show 
that, when the initial [Br2]o is lower than (k-1/k2)[H

+], the reaction is of the zeroth-or-
der with respect to Br2. By IM, the reaction is zeroth-order (its regression coeffi-
cient is higher than other-order) with k2 = 6.25x10-7 M s-1. .By IRM, the order is 
-0.01361 ≈ 0 = zeroth-order with k2 = 5.99x10-7M s-1. By NM, it is also zeroth-order 
(lower deviation standard) k1 = 6.38x10-7 M s-1.

Second, by IRM, it is also just assumed as zeroth-order. This is because nearer to 
0.00. By CM, there are also two possible values of k, but the second is meaningless 
because k must have positive value. Then by Eq. (7), k2 = 6.38x10-7M s-1.

Table 5. The results of data analysis of the combination of data from Table 1 
and Table 2

A B  r n CF k1/ s-1 E P / % k2 / Ms-1 E P / %
A -2.50x10-4 7.88x10-3 0.99712 1 1.0536 8.30x10-3 17.23
B -1.40x10-4 7.43x10-3 -0.99779 1 1.0536 7.83x10-3 10.59
C -2.60x10-4 8.05x10-3 0.99755 1 1.0536 8.48x10-3 19.77
D -1.42x10-4 7.38x10-3 0.99857 1 1.0536 7.78x10-3 9.89

Note: A is the combination of the first 3 data of Table 1 and the first 3 data of Table 2.
B is the combination of the first 3 data of Table 1 and the last 3 data of Table 2.
C is the combination of the last 3 data of Table 1 and the first 3 data of Table 2.
A is the combination of the last 3 data of Table 1 and the last 3 data of Table 2.

All combinations give two possible values of k but one of them are meaningless.

Discussion
The first goal
By Eq. (21), for ([Ao] - [A1]) in Table 2 (for zeroth-order) gives kA-1 = {(1 - 0.9) 

x 0.050}/50= 1.00x10-4A s-1/ 160 = 6.25x10-7 M s-1. By Eq. (20), for ([Ao] - [A2]) 
gives kA-2 = (1-0.92) x 0.050/90=1.06x10-4A s-1/ 160 = 6.60x10-7 M s-1. Their error 
percentage = [(6.60x10-7 - 6.25x10-7): 6.25x10-7 x100 %]= 5.6%.  The error per-
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centage is large. But this is not because the theory is wrong. This is an experimental 
error.  By Eq. (18) tβ-2 should be 45, then tβ = 50 + 45 = 95 s and kA-2 = (1-0.92) x 
0.050/95=1.00x10-4A s-1/ 160 = 6.25x10-7 M s-1. The error percentage is 0.00 %. 
Different fraction gives the same rate constant.

By Eq. (18), tβ-1 = tβ-2 and in Table 1 = 15 s. By Eq. (21), for first-order = ([Ao] 
- [A1]) in Table 2 gives kA-1 = {(1 - 0.9)}/15 = 6.67x10-3s-1. For ([Ao] - [A2]) gives 
kA-2 = {(1-0.92)} /30 = 6.33x10-3 s-1. Their error percentage=[(6.66x10-3-6.33x10-3): 
6.66x10-3 x 100%] = 4.95%. It is also large. But by Eq. (40), kA-1 = 6.66x10-3 x (-ln 
0.9 / 0.1) = 7.02x10-3 and kA-2 = 6.33x10-3s-1x (-ln 0.81 / 0.19) = 7.02x10-3.  The EP is 
0.00 %. The same rate constant can be obtained at different fractions.

Due to the correction factor, by NM the value of error percentage are the same, 
including for first-order reaction. Thus, it is not a necessity to restrict the percentage 
of reaction followed to maximum 5%.

The model used in this study is slightly different from that of the main reference. 
However, by the same principle, both discuss the reaction that takes place in two 
different reaction mechanisms. Based on Table 3 and Table 4 the CM always gives 
twovalues of k but one of them is always negative. 

In Table 3, the slope is positive which means the reaction is of the first-order.  
By Eq. (9), this value is from k1. The intercept is negative which thus the k2 value 
cannot be obtained; a constant must have positive value.

In Table 4 the intercept is positive which means the reaction is of the zeroth-or-
der.  By Eq. (9), this value is the value of k2. This is in accordance with the theory: 
if [C] → 0, plotting the intercept of vo versus [C] gives the value of k of zeroth-order 
reaction and so must be positive then vo = k2.

To be valid, CM should be able to give simultaneous value of k1 and k2 for every 
combination. In Table 5, there are two values, but once again, only one in each of 
them are positive; that is the slope. By Eq. (9) and in our model, this gives the value of 
k1. And, differ with that in Table 3. and Table 4 all with large EP. One of the possible 
reason is that the data are not at the same level of concentration. But, whatsoever, the 
CM is not always suitable for data analysis of reaction with 2 successive mechanisms.

The second goal
There is a fundamental premise difference in the determination of a rate law by IM 

and by conventional IRM. By IM, the premise is that, for an experimental data, there 
must be a most probably fixed rate law. In contrast, in conventional IRM, the results 
of data analysis using Eq. (9) will give a certain order and its rate constant value. If 
the experiment is done correctly then the results of both methods (kA and kIRM) will be 
attributable. For example, if from the calculation by Eq. (9), the order obtained, let 
say, 0.875, then it will be assumed to be first-order. This is because the order reaction 
usually integer or half-integer and 0.875 is nearer 1 than 0.5. The value of the calcu-
lated rate constant is the value for the 0.875th-order and not for first-order (as in IM). 
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The greater the order difference (with that from IM) the greater the difference. Thus, 
for this reason, most chemists recommend the need to check the IRM value.

There is an alternative way of determining the order. That is by variance anal-
ysis; and introduced as the new method: the NM. The spirit is resembled with IM. 
Both give the most possible rate law. 

It is interesting to compare the values obtained by IRM, CM, and NM. In Table 3, 
the IRM gives EP = 6.78 %, CM gives EP = 3.67 %, and NM = 0.42 % for k1. In Table 
4, the IRM gives EP = 4.16 %, CM gives EP = 2.08 %, and NM = 0.00 % for k2. The 
EP for NM are always lower than 5%. Then, it can be concluded that of the 3 models, 
the NM is the best. These values are obtained after using their correspondence correc-
tion factor; However, by Eq. (38) or Eq. (39), the value kIRM can be determined if kA is 
known. That is to say, that any kIRM value is fixed. There is no need of IM checks for k.

However, all of the above conclusions apply only to certain conditions; at the 
out-set or at the nearly-end of the reaction. Thus, for the reaction which takes place 
in two reaction mechanisms the IRM, CM, or CN cannot be used, in one step, to 
determine the rate constant. The initial rate method cannot be used to determine 
both constants simultaneously. Compared with IM, this method is also impractical 
because rate is the difference of to concentrations. But, by IRM, a rate law can be 
determined directly from the change of product concentration.

Implementation
There are two cases that can be discussed further as the possible implication of 

this research. 

First case
It is about enzymatic reaction which has the rate law:

][
][max

SK
Svv

M +
= (42)

where v, vmax, [S], and KM are the rate, the maximum rate, the substrate concentra-
tion, and the Michaelis-Menten constant, respectively (Michaelis & Menten, 1913). 
Mostly, KM is determined by IRM (Briggs & Haldane, 1925).

Theoretically, enzymatic reaction takes place in 2 successive reaction mecha-
nisms. If the substrate concentration, [S] >> KM, the reaction is zeroth-order relating 
to [S]. However, as the reaction proceed, [S] will decrease and because KM constant 
then, [S] << KM, and the reaction becomes first-order with respect to [S]. That is to 
say, the reaction takes place in 2 successive mechanisms.

There are two equations that most commonly used in the determination of KM 
: the Lineweaver-Burk equation and the Eadie–Hofstee equation (Lineweaver & 
Burk, 1934; Eadie, 1942; Hofstee, 1959). Both equations derived from eq. (42) and 
use IRM for KM determination but, mostly give different values. Some even claimed 
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that the second is better and superior than the first (Dowd & Riggs, 1965).
The first problem: there is no explanation of the source of the data used for the 

calculation, from the condition when the reaction is zeroth-order, first-order or mix. 
It is stand to reason that using data from one condition will not represent the reac-
tion as whole. The second is that eq. (42) is resemble with Langmuir isotherm and 
the Lineweaver-Burk equation is very much resembled with Langmuir equation: 
which is unreliable for Kd determination (Patiha et al., 2016). 

Second case
As with IM, the introduced method is impractical. Unified integral equations 

have been introduced (Tan et al., 1994). An improvement was also given (Patiha, 
1998). Because, by the NM is the value of k is determined by variance analysis 
then it is impractical. Unified NM is open to be invented. It is possible to invent a 
new IRM modification formula for DM, with which, the true order and the accurate 
value of apparent rate constant obtained will always be the same with that from 
integral method.

Conclusions
The IRM is not suitable for simultaneous determination of constants of reaction 

which take places in 2 mechanisms. There is no necessary to restrict the percentage 
of reaction followed to a maximum of 5%. The CM cannot be (always) used to simul-
taneously determine the two constants of the reaction that takes place in two mech-
anisms. The NM is valid and more reliable and there is no need of IM checks for k. 

Recommendations
It is recommended to invent a new, valid, and reliable method for determining 

KM of Michaelis-Menten equation and to derive a unified form of DM equation, 
which does not require IM checks.
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