"Az-buki" National Publishing House
Ministry of Education and Science
Wikipedia
  • Login
  • Registration
Аз-букиAz-buki National Publishing House for Education and Science
Няма резултати
Вижте всички резултати
  • Main Page
  • About us
    • About us
    • Who we are
    • Team
    • Ethics
    • Documents
  • Az-buki Weekly
  • Journals
    • Strategies for Policy in Science and Education
    • Bulgarian Language and Literature
    • Pedagogika-Pedagogy
    • Mathematics and Informatics
    • Natural Science and Advanced Technology Education
    • Vocational Education
    • Istoriya-History journal
    • Chuzhdoezikovo Obuchenie-Foreign Language Teaching
    • Filosofiya-Philosophy
  • Editions
  • Projects
  • Advertising
  • Subscribe now
  • Contact
  • en_US
  • bg_BG
  • Main Page
  • About us
    • About us
    • Who we are
    • Team
    • Ethics
    • Documents
  • Az-buki Weekly
  • Journals
    • Strategies for Policy in Science and Education
    • Bulgarian Language and Literature
    • Pedagogika-Pedagogy
    • Mathematics and Informatics
    • Natural Science and Advanced Technology Education
    • Vocational Education
    • Istoriya-History journal
    • Chuzhdoezikovo Obuchenie-Foreign Language Teaching
    • Filosofiya-Philosophy
  • Editions
  • Projects
  • Advertising
  • Subscribe now
  • Contact
  • en_US
  • bg_BG
Няма резултати
Вижте всички резултати
Аз-буки Az-buki National Publishing House for Education and Science
Няма резултати
Вижте всички резултати
Main Page Uncategorized

Development of Oil Fields Using Science Artificial Intelligence and Machine Learning

Ivo Hristov by Ivo Hristov
26-12-2023
in Uncategorized
A A

Al-Obaidi S.H.1), Chang W.J.2), Hofmann M.1)
1) Department of Petroleum Engineering – Mining University (Russia)
2)Department of Petroleum Engineering – University of Xidian (China)

https://doi.org/10.53656/nat2023-3-4.01

Abstract. Since artificial intelligence has become increasingly prevalent in the oil industry, it is relevant to this study since it is being used for exploration, development, production, field design, and management planning to improve decision-making, reduce costs, and speed up production. For establishing relationships between complex non-linear datasets, machine learning has proved superior to regression methods in petroleum engineering when it comes to high-dimensional data prediction errors, processing power, and memory. In this article, machine learning is compared with conventional statistical models of oil and gas engineering for determining and predicting reservoir pressure values in the development of oil fields. The effectiveness and potential of machine learning to determine reservoir pressure values was analysed. Using non-parametric multivariate model that link well performance over time, a new method is proposed for predicting reservoir pressure using machine learning. According to the proposed method, the predicted reservoir pressure correlates well with values measured by hydrodynamic studies of wells based on the dynamics of indicators describing well performance. Machine learning method based on random forest algorithm tends to provide better prediction reliability for reservoir pressure than linear regression method (absolute deviation: 0.86; relative deviation: 6.8%).
Keywords: Machine learning; Oil fields; Reservoir pressure; Prediction; Non-parametric

Log in to read the full text Your Image Description

Свързани статии:

Default ThumbnailReflexive-Dative Constructions with Optative Meaning in Bulgarian Default ThumbnailOn the Need for Psychologization of the Modern Educational Process Default ThumbnailNew View of the Idea about Art Education, Reflected in the “School Practice” Journal Since 1906 Default ThumbnailSustainable Professional Development Through Coaching: Benefits for Teachers and Learners

Последвайте ни в социалните мрежи

shareTweet
Previous article

ГОДИШНО СЪДЪРЖАНИЕ НА НАУЧНО СПИСАНИЕ „ИСТОРИЯ“

Next article

Agile Software Development Assisted Implementation of a Mentoring Solution in a Large Enterprise

Next article

Agile Software Development Assisted Implementation of a Mentoring Solution in a Large Enterprise

Bulgarian Folk Anti-Nature Customs and Superstitions

A Posteriori Analysis of Criteria Test for Activation and Diagnostics of Reflection in Learning Biology and Health Education – 8th Grade (Topic: Metabolism)

Последни публикации

  • Училище за живота
  • Малки молекули спират глаукомата преди ослепяване
  • Младежи оставят телефоните и се впускат в приключение
  • Педагогически модел развива социално-емоционалните умения у децата чрез нов прочит на класически приказки
  • Отпуск при граждански и обществени задължения – какво предвижда законът
  • Близо 200 деца от Тараклийски район на Молдова посетиха България по програма на МОН
  • Научноизследователският кораб „Св. св. Кирил и Методий“ отплава за четвърти път за Антарктида
  • Мнение и мислене
  • Министър Красимир Вълчев: Обществените и природните науки помагат на децата да разбират технологиите, а изкуствата – да развиват креативност
  • Представят успешни модели на дуалното обучение
  • Връчиха наградите от XXII национален конкурс „Златна есен – плодовете на есента“
  • Математическата гимназия в Пловдив чества 55-годишнина
  • Гимназисти от Шумен с приз за най-добра конструкция от спагети
  • Министър Красимир Вълчев откри две обновени училища в Пещера
  • Българска ученичка спечели Международната олимпиада по креативно програмиране
  • Нов STEАM център В 7. СУ „Кузман Шапкарев“ обединява наука и изкуство
  • Инж. Таня Михайлова в новия STEM център на СУ „Козма Тричков“: Важно е децата да имат умения за живота
  • Акад. Николай Витанов, зам.-министър на образованието и науката: Повече родни таланти избират българските висши училища
  • Вестник „Аз-буки“ – брой 44/2025 г.
  • Сп. „Стратегии на образователната и научната политика“, книжка 5/2025, година XXXIII
  • Innovative Conception, Policy and Strategy for Education and Training for Proactive Cyber Counterintelligence and Defence
  • Artificial Intelligence (AI) as an Opportunity for Enhancing the Competitiveness of the Restaurant Business through Innovative Modules (IM)

София 1113, бул. “Цариградско шосе” № 125, бл. 5

+0700 18466

izdatelstvo.mon@azbuki.bg
azbuki@mon.bg

Полезни линкове

  • Къде можете да намерите изданията?
  • Вход за абонати
  • Main Page
  • Contact
  • Subscribe now
  • Projects
  • Advertising

Az-buki Weekly

  • Вестник “Аз-буки”
  • Subscribe now
  • Archive

Scientific Journals

  • Strategies for Policy in Science and Education
  • Bulgarian Language and Literature
  • Pedagogika-Pedagogy
  • Mathematics and Informatics
  • Natural Science and Advanced Technology Education
  • Vocational Education
  • Istoriya-History journal
  • Chuzhdoezikovo Obuchenie-Foreign Language Teaching
  • Filosofiya-Philosophy

Newsletter

  • Accsess to public information
  • Условия за ползване
  • Профил на купувача

© 2012-2025 Национално издателство "Аз-буки"

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
en_US
bg_BG en_US
  • Login
  • Sign Up
Няма резултати
Вижте всички резултати
  • Main Page
  • About us
    • About us
    • Who we are
    • Team
    • Ethics
    • Documents
  • Az-buki Weekly
  • Journals
    • Strategies for Policy in Science and Education
    • Bulgarian Language and Literature
    • Pedagogika-Pedagogy
    • Mathematics and Informatics
    • Natural Science and Advanced Technology Education
    • Vocational Education
    • Istoriya-History journal
    • Chuzhdoezikovo Obuchenie-Foreign Language Teaching
    • Filosofiya-Philosophy
  • Editions
  • Projects
  • Advertising
  • Subscribe now
  • Contact
  • en_US
  • bg_BG

© 2012-2025 Национално издателство "Аз-буки"